IBM~ DB2 Universal Database

Application Development Guide:
Programming Server Applications

Version 8

SC09-4827-00

IBM~ DB2 Universal Database

Application Development Guide:
Programming Server Applications

Version 8

SC09-4827-00

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

+ To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order|

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com /planetwide|

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993 - 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About ThisBookvi Chapter 3. SQL-Bodied Routines 59
CREATE Statements for SQL-Bodied Routmes 59
Part 1. Routines (Stored gyna;ml'c S%L in i%L Bodlefd Rso(ls’imes . . .60
i ing Error r
Procedures, UDFs, and Methods) . 1 [°PnG Bror Heesases 1o o
Condition Handlers in SQL Procedures . . .63
Chapter 1. Introducing Routines . -3 Condition Handlers in SQL Procedures . . 63
Routines (Stored Procedures, UDFs, Methods) 3 Condition Handler Declarations 64
Benefits of Routines.. I SIGNAL and RESIGNAL Statements in
Types of Routines : - 6 Condition Handlers67
Routines: Stored Procedures . . .7 SQLCODE and SQLSTATE Varlables in
Routines: Scalar User-Defined Functlons . .8 SQL Procedures.68
Routines: Table User-Defined Functions . . 9
Routines: Methods . - 10 Chapter 4. External Routines.71
]) Parameter Styles for External Routines . . . 71
Chapter 2. Developing Routines13 Syntax for Passing Arguments to Routines
Supported Routine Programming Languages 13 Written in C/C++, OLE, or COBOL74
Best Practices for Developing Routines . . . 16 SQL in External Routines . . .89
Performance Considerations for Authorizations and Binding for External
Developing Routines . . . - 16 Routines that Contain SQL92
Security Considerations for Routmes . .20 Effects of DYNAMICRULES on Dynarmc SQL 95
Library and Class Management C/C++ Routines 97
Considerations for Developing Routines . 23 C/C++ Routines 97
Restrictions for Routines.24 Include File for C/C++ Routmes
Registering Routines27 (sqludfh) . . . 102
Writing Routines29 Supported SQL Data Types in C/ C++ .. 103
Debugging Routines . . . - 31 SQL Data Type Handhng in C/C++
Conlflicts When Reading and ertlng Tables Routines . . . 106
From Routines . . . S e .. 38 Graphic Host Varlables in C / C++
Stored Procedure Features Lo . . .35 Routines . . . 115
Stored Procedure Parameter Modes .. .35 C++ Type Decoratlon 116
Stored Procedure Result Sets 36 Java Routines118
Parameter Handling in PROGRAM TYPE Java Routines . . 118
MAIN or PROGRAM TYPE SUB Stored JAR File Admmlstratlon on the Database
Procedures . . . Lo .47 Server. . . 122
UDF and Method Features . .. L4 Supported SQL Data Types in]ava 123
Scratchpads for UDFs and Methods R Debugging Stored Procedures in Java . . 125
Scratchpads on 32-bit and 64-bit Platforms 52 OLE Automation Routines . . . 129
Method and Scalar Function Processing OLE Automation Routine De51gn .. 130
Model58 Creating and Registering OLE
User-Defined Table Functlons5 Automation Routines . . 130
User—Defme.d Table Fuuctlons B L Object Instance and Scratchpad
Table Function Processing Model 55 Considerations and OLE Routines . . . 132
Table Function Execution Model for Java 57 Supported SQL Data Types in OLE

Automation. 133

© Copyright IBM Corp. 1993 - 2002 iii

OLE Automation Routines in BASIC and

C++ 134
OLE DB User- Deflned Table Functlons . . 138
OLE DB User-Defined Table Functions 138
Creating an OLE DB Table UDF 139
Fully Qualified Rowset Names . . . 142
Supported SQL Data Types in OLE DB 143
Chapter 5. Invoking/Calling Routines . . 145
Invoking Routines 145
Invoking Stored Procedures B 1
Invoking UDFs 148
Invoking User-Defined Table Functlons .. 149
Routine Nesting 151
Invoking 32-bit Routlnes on a 64 b1t
Database Server151
Code Pages and Routines 152
Referencing Routines. 154
Routine Names and Paths 154
References to Functions. 156
Function Selection 157
Distinct Types as Routine Parameters .. 159
LOB Values as UDF Parameters 160
References to Stored Procedures 161
Stored Procedure Selection. 162

Part 2. Large Objects,
User-Defined Distinct Types, and

Triggers 163
Chapter 6. Large Objects. 165
Large Object Usage165
Large Object Locators . . . 166

Retrieving a LOB Value with a LOB Locator 168
Deferring the Evaluation of LOB Expressions 170

Large Object File Reference Variables . . . 173
Writing Data from a CLOB Column to a Text

File 175
Inserting Data from a Text Flle 1nt0 a CLOB
Column176

Chapter 7. User-Defined Distinct Types 179

User-Defined Types N VE
User-Defined Distinct Types . . . 179
Strong Typing in User-Defined Dlstlnct

Types. . . e £ |
Defining Dlstmct Types .o .. 182
Creating Tables with Columns Based on

Distinct Types184

iv Programming Server Applications

Dropping User-Defined Types.

Defining Currency-Based Distinct Types

Defining a Distinct Type for Completed Job

Application Forms

Creating Tables to Track Internatlonal Sales

Creating a Table to Store Completed Job

Application Forms o

Manipulating Distinct Types .
Manipulating Distinct Types .
Casting between Distinct Types .
Performing Comparisons Involving
Distinct Types .
Performing Comparlsons between
Distinct Types and Constants .
Performing Assignments Involving
Distinct Types in Embedded SQL
Performing Assignments Involving
Distinct Types in Dynamic SQL .
Performing Assignments Involving
Different Distinct Types . .
Performing UNION Operations on
Distinctly Typed Columns . .
Defining Sourced UDFs for Distinct Types

Chapter 8. User-Defined Structured Types
User-Defined Structured Types .
Defining Structured Types . .
Storing Instances of Structured Types .
Instantiability in Structured Types
Structured Type Hierarchies
Creating a Structured Type H1erarchy
Defining Behavior for Structured Types
Dynamic Dispatch of Methods .
System-Generated Routines for Structured
Types .

Comparison and Castmg Functrons for

Structured Types .

Constructor Functions for Structured

Types .

Mutator Methods for Structured Types

Observer Methods for Structured Types
Typed Tables e .

Typed Tables

Creating Typed Tables

Dropping Typed Tables . .

Substitutability in Typed Tables .

Storing Objects in Typed Table Rows

Defining System-Generated Object

Identifiers .

. 185
. 186

. 187

188

. 189
. 189
. 189
. 191
. 192
. 193
. 193
. 194

. 195

. 196
196

199

. 200
. 201
. 202
. 203
. 203
. 204
. 206
. 207

. 209

. 209

. 210

210
211

.21
.21
. 212
. 216
. 217
. 218

. 220

Defining Constraints on Object Identifier
Columns.
Reference Types

Typed Views
Typed Views
Creating Typed V1ews
Altering Typed Views
Dropping Typed Views .

Querying Typed Tables and Typed V1ews
Issuing Queries to Dereference References
Returning Objects of a Particular Type
Using ONLY
Restricting Returned Types Usmg a TYPE
Predicate. .
Returning All Possrble Types Usmg
OUTER . . .

Structured Types as Column Types .

Storing Structured Type Objects in Table
Columns.

Inserting Structured Type Attrrbutes Into
Columns. .
Defining and Altermg Tables w1th
Structured Type Columns . .
Defining Types with Structured Type
Attributes

Inserting Rows That Contam Structured
Type Values.

Modifying Structured Type Values in
Columns.

Transform Functions and Transform Groups
Transform Functions and Transform
Groups .

Recommendatlons for Namlng Transform
Groups . .
Specification of Transform Groups .

Creating the Mapping to the Host Language

Program .

Host Language Program Mappmgs w1th
Transform Functions .

Function Transforms .

Implementing Function Transforms Usmg
SQL-bodied Routines .
Passing Structured Type Parameters to
External Routines .

Client Transforms.

Implementing Client Transforms Usmg
External UDFs .

Implementing Client Transforms for
Binding in from a Client Using External
UDFs .

. 222
. 223
. 228
. 228
. 229
. 231
. 232

232
232

. 234

. 235

. 236
. 237

. 237

. 240

. 240

. 241

. 242

. 243

246

. 246

. 248
. 249

. 252

. 252

. 253

. 255

. 257
. 259

. 262

. 263

Data Conversion Considerations . . 263
Transform Function Requirements . 264
Retrieving Subtype Data from DB2 . . 266
Returning Subtype Data to DB2 . . 269
Structured Type Host Variables . . 273
Declaring Structured Type Host Varlables 273
Describing a Structured Type . . 274
Chapter 9. Triggers. . . 275
Triggers in Application Development . 275
INSERT, UPDATE, and DELETE Triggers 278
Trigger Interactions with Referential
Constraints 279
INSTEAD OF Tr1ggers . . 279
Trigger Creation Guidelines . 281
Creating Triggers . . 282
Trigger Granularity . . 283
Trigger Activation Time. . 284
Transition Variables . . 286
Transition Tables . . 288
Triggered Action . . 289
Triggered Action 289
Triggered Action: Conditions . . 290
Triggered Action: SQL Statements . 291
Triggered Action: Functions . 292
Multiple Triggers . . 293
Synergy Between Triggers, Constramts and
Routines . . 294
Extracting lnformat1on from UDTs UDFs
and LOBs with Triggers. . 294
Preventing Operations on Tables Usmg
Triggers . .. 296
Defining Business Rules Usmg Tr1ggers 297
Defining Actions Using Triggers . . 297
Part 3. Appendixes . . 301
Appendix A. DB2GENERAL Routines . 303
DB2GENERAL Routines . 303
DB2GENERAL UDFs . 304
Supported SQL Data Types in
DB2GENERAL Routines . .307
Java Classes for DB2GENERAL Routmes . .309
Java Classes for DB2GENERAL Routines 309
DB2GENERAL Java Class:
COM.IBM.db2.app.StoredProc . 310
DB2GENERAL Java Class:
COM.IBM.db2.app.UDF. .31
Contents V

DB2GENERAL Java Class:
COM.IBM.db2.app.Lob . .
DB2GENERAL Java Class:
COM.IBM.db2.app.Blob. .
DB2GENERAL Java Class:
COM.IBM.db2.app.Clob.

Appendix B. DB2 Universal Database
technical information . .
Overview of DB2 Universal Database
technical information

Categories of DB2 techmcal 1nformat1on
Printing DB2 books from PDF files .
Ordering printed DB2 books .
Accessing online help .
Finding topics by accessing the DBZ
Information Center from a browser .
Finding product information by accessing
the DB2 Information Center from the
administration tools . .
Viewing technical documentatlon onhne
directly from the DB2 HTML Documentation
CD.

Updating the HTML documentahon 1nstalled
. 332

on your machine .

vi Programming Server Applications

. 314

. 315

. 315

. 317

. 317

318

. 325
. 326
. 326

. 328

. 330

. 331

Copying files from the DB2 HTML
Documentation CD to a Web Server.
Troubleshooting DB2 documentation search
with Netscape 4.x. .
Searching the DB2 documentatlon
Online DB2 troubleshooting information .
Accessibility
Keyboard Input and Nav1gat10n
Accessible Display
Alternative Alert Cues . .
Compatibility with Assistive Technologles
Accessible Documentation . .o
DB2 tutorials . .
DB2 Information Center for toplcs .

Appendix C. Notices
Trademarks .

Index

Contacting IBM .
Product information .

. 334

. 334
. 335
. 336
. 337
. 337
. 338

. 338
338

. 338
. 338
. 339

. 341
. 344

. 347

. 355
. 355

About This Book

The Application Development Guide is a three-volume book that describes what
you need to know about coding, debugging, building, and running DB2
applications:

* Application Development Guide: Programming Client Applications contains what
you need to know to code standalone DB2 applications that run on DB2
clients. It includes information on:

© Copyright IBM Corp.

Programming interfaces that are supported by DB2. High-level
descriptions are provided for DB2 Developer’s Edition, supported
programming interfaces, facilities for creating Web applications, and
DB2-provided programming features, such as routines and triggers.

The general structure that a DB2 application should follow.
Recommendations are provided on how to maintain data values and
relationships in the database, authorization considerations are described,
and information is provided on how to test and debug your application.

Embedded SQL, both dynamic and static. The general considerations for
embedded SQL are described, as well as the specific issues that apply to
the usage of static and dynamic SQL in DB2 applications.

Supported host and interpreted languages, such as C/C++, COBOL, Perl,
and REXX, and how to use embedded SQL in applications that are
written in these languages.

Java (both JDBC and SQLj), and considerations for building Java
applications that use WebSphere Application Servers.

The IBM OLE DB Provider for DB2 Servers. General information is
provided about IBM OLE DB Provider support for OLE DB services,
components, and properties. Specific information is also provided about
Visual Basic and Visual C++ applications that use the OLE DB interface
for ActiveX Data Objects (ADO).

National language support issues. General topics, such as collating
sequences, the derivation of code pages and locales, and character
conversions are described. More specific issues such as DBCS code
pages, EUC character sets, and issues that apply in Japanese and
Traditional Chinese EUC and UCS-2 environments are also described.

Transaction management. Issues that apply to applications that perform
multisite updates, and to applications that perform concurrent
transactions, are described.

Applications in partitioned database environments. Directed DSS, local
bypass, buffered inserts, and troubleshooting applications in partitioned
database environments are described.

1993 - 2002 vii

Commonly used application techniques. Information is provided on how
to use generated and identity columns, declared temporary tables, and
how to use savepoints to manage transactions.

The SQL statements that are supported for use in embedded SQL
applications.

Applications that access host and iSeries environments. The issues that
pertain to embedded SQL applications that access host and iSeries
envirionments are described.

The simulation of EBCDIC binary collation.

* Application Development Guide: Programming Server Applications contains what
you need to know for server-side programming including routines, large
objects, user-defined types, and triggers. It includes information on:

Routines (stored procedures, user-defined functions, and methods),

including:

- Routine performance, security, library management considerations, and
restrictions.

- Registering and writing routines, including the CREATE statements
and debugging.

- Procedure parameter modes and parameter handling.

- Procedure result sets.

- UDF features including scratchpads and scalar and table functions.
- SQL procedures including debugging, and condition handling.

- Parameter styles, authorizations, and binding of external routines.

- Language-specific considerations for C, Java, and OLE automation
routines.

- Invoking routines
- Function selection and passing distinct types and LOBs to functions.
- Code pages and routines.

Large objects, including LOB usage and locators, reference variables, and
CLOB data.

User-defined distinct types, including strong typing, defining and
dropping UDTs, creating tables with structured types, using distinct
types and typed tables for specific applications, manipulating distinct
types and casting between them, and performing comparisons and
assignments with distinct types, including UNION operations on
distinctly typed columns.

User-defined structured types, including storing instances and
instantiation, structured type hierarchies, defining structured type
behavior, the dynamic dispatch of methods, the comparison, casting, and
constructor functions, and mutator and observer methods for structured

types.

viii Programming Server Applications

Typed tables, including creating, dropping, substituting, storing objects,
defining system-generated object identifiers, and constraints on object
identifier columns.

Reference types, including relationships between objects in typed tables,
semantic relationships with references, and referential integrity versus
scoped references.

Typed tables and typed views, including structured types as column
types, transform functions and transform groups, host language program
mappings, and structured type host variables.

Triggers, including INSERT, UPDATE, and DELETE triggers, interactions
with referential constraints, creation guidelines, granularity, activation
time, transition variables and tables, triggered actions, multiple triggers,
and synergy between triggers, constraints, and routines.

Application Development Guide: Building and Running Applications contains
what you need to know to build and run DB2 applications on the operating
systems supported by DB2:

AIX
HP-UX
Linux
Solaris
Windows

It includes information on:

How to set up your application development environment, including
specific instructions for Java and SQL procedures, how to set up the
sample database, and how to migrate your applications from previous
versions of DB2.

DB2 supported servers and software to build applications, including
supported compilers and interpreters.

The DB2 sample program files, makefiles, build files, and error-checking
utility files.

How to build and run Java applets, applications, and routines.

How to build and run SQL procedures.

How to build and run C/C++ applications and routines.

How to build and run IBM and Micro Focus COBOL applications and
routines.

How to build and run REXX applications on AIX and Windows.

How to build and run applications with ActiveX Data Objects (ADO)
using Visual Basic and Visual C++ on Windows.

How to build and run applications with remote data objects using Visual
C++ on Windows.

About This Book 1X

X Programming Server Applications

Part 1. Routines (Stored Procedures, UDFs, and
Methods)

© Copyright IBM Corp. 1993 - 2002

2 Programming Server Applications

Chapter 1. Introducing Routines

Routines (Stored Procedures, UDFs, Methods) 3 Routines: Scalar User-Defined Functions . . 8

Benefits of Routines . .5 Routines: Table User-Defined Functions . . 9

Types of Routines6 Routines: Methods.10
Routines: Stored Procedures . .7

Routines (Stored Procedures, UDFs, Methods)

Routines are composed of application logic that resides on the database server
and can be invoked from a client or other routines. Because routines are
database objects, you must register them with a database in order to invoke
them.

There are three types of routines that you can implement: stored procedures,
user-defined functions (UDFs), and methods. These routine types share much
in common with regards to their development, but fulfill different
requirements when interacting with databases. Stored procedures serve as
extensions to clients and run on the database server. UDFs enable you to
extend and customize SQL. Methods provide behavior for structured types.

There are two principal styles of routines:

SQL routines
SQL routines are composed entirely of SQL statements. You specify
these statements in the CREATE statement that you use to register the
routine.

External routines
External routines can be written in the following programming
languages: C, C++, Java, and OLE. In addition to these languages,
stored procedures can also be written in COBOL. Regardless of the
routine type or programming language, you can include SQL
statements in external routines.

An application or a routine may invoke any routine, regardless of whether the
invoker and invokee are written in the same programming language. For
example, C applications can invoke Java'" routines, or Java UDFs can invoke
SQL procedures. Whether the languages of the application and the routine are
the same or differ, DB2® transparently passes the values between the
application and the routine. For more information on choosing a
programming language in which to write your routine, see the topic
"Supported Routine Programming Languages”.

© Copyright IBM Corp. 1993 - 2002 3

For assistance in developing routines, use the DB2 Development Center. It
provides simple interfaces and a set of wizards that help make it easy to
perform your development tasks. You can also integrate the DB2 Development
Center with popular application development tools, such as Microsoft® Visual
Studio.

The development of routines involves the following tasks:

1. Register the Routine. This task can occur at any time before you invoke
the routine, except in the following circumstances:

* Java routines that are catalogued on JAR files must be written before
they can be registered.

* Routines that issue SQL statements that refer to themselves must be
registered before they are precompiled and bound. This also applies to
situations where there is a cycle of references, for example, Routine A
references Routine B, which references Routine A.

2. Write the routine.

3. Build (precompile -- for routines with embedded SQL, compile, and link)
the routine. (See the related links for platform and language-specific build
information.)

4. Debug and test the routine.
5. Invoke the routine.

Related concepts:

+ [“Routines: Stored Procedures” on page 7|

* ["Supported Routine Programming Languages” on page 13|

* [‘Routines: Scalar User-Defined Functions” on page 8|

* ['Routines: Methods” on page 10|

* [‘Routines: Table User-Defined Functions” on page 9|

Related tasks:

* “Building JDBC Routines” in the Application Development Guide: Building and
Running Applications

* “Building SQL]J Routines” in the Application Development Guide: Building and
Running Applications

* “Building C Routines on AIX” in the Application Development Guide: Building
and Running Applications

* “Building C++ Routines on AIX” in the Application Development Guide:
Building and Running Applications

* “Building IBM COBOL Routines on AIX” in the Application Development
Guide: Building and Running Applications

4 Programming Server Applications

¢ “Building Micro Focus COBOL Routines on AIX” in the Application
Development Guide: Building and Running Applications

* “Building C/C++ Routines on Windows” in the Application Development
Guide: Building and Running Applications

* “Building IBM COBOL Routines on Windows” in the Application
Development Guide: Building and Running Applications

¢ “Building Micro Focus COBOL Routines on Windows” in the Application
Development Guide: Building and Running Applications

* “Building Micro Focus COBOL Routines on HP-UX” in the Application
Development Guide: Building and Running Applications

¢ “Building Micro Focus COBOL Routines on Solaris” in the Application
Development Guide: Building and Running Applications

¢ “Building C Routines on HP-UX” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on HP-UX” in the Application Development Guide:
Building and Running Applications

¢ “Building C Routines on Linux” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on Linux” in the Application Development Guide:
Building and Running Applications

¢ “Building C Routines on Solaris” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on Solaris” in the Application Development Guide:
Building and Running Applications

* [“Writing Routines” on page 29|

* [‘Registering Routines” on page 27|

* [“Invoking Routines” on page 145

* [‘Debugging Routines” on page 31|

Benefits of Routines

When faced with the task of developing new functionality to interact with a
database, there are two approaches you can choose from. You can add the
new logic to a client application, or you can develop a routine, where the new
logic will reside on the database server. There are a number of benefits in
choosing the latter approach.

The following benefits can be gained by moving application logic into
routines:

Reduce network traffic
When a client references a routine for invocation, no data needs to be

Chapter 1. Introducing Routines 5

transmitted back to the client for processing. This is because the
routine runs on the server, and all of the routine’s processing is done
there. Only those records that are actually required at the client need
to be sent, such as output values, or stored procedure result sets. This
can reduce the volume of data transmitted between the client and the
database server, which, in turn, can result in improved performance.

Alleviate the processing load on the client
In environments where client performance is a concern, routines are
practical means of running application logic. The client simply
invokes the routine, and the processing is done on the database server.

Allow faster, more efficient execution
Because routines are database objects, they can have a closer
relationship with the database manager than clients do, resulting in
better performance if the application logic contains SQL. NOT
FENCED routines run in the same process as the database manager.
FENCED routines use shared memory for communication, making
them more proficient in transmitting SQL requests and data than
protocols such as TCP/IP, which are commonly used by clients.

Enable controlled access to database objects
You can use routines to control access to database objects. While users
may not have permission to issue certain statements, they may have
permission to run routines that do issue them.

Facilitate the encapsulation of application logic
In an environment where there are numerous clients, all with their
own applications, the effective use of routines can simplify code reuse,
standardization, and maintenance. For example, if a particular aspect
of application behavior needs to be changed in an environment where
routines are used, only the affected routine is modified. If routines
had not been used in this instance, application logic changes would
have been required on each client’s system.

Related concepts:
* ['Routines (Stored Procedures, UDFs, Methods)” on page 3|
* ["Performance Considerations for Developing Routines” on page 16|

* ['Security Considerations for Routines” on page 20|

Types of Routines

6

There are three types of routines you can develop: stored procedures,
user-defined functions (UDFs), and methods. While the details involved in
writing and registering them are similar, they each lend themselves to
different uses.

Programming Server Applications

The following sections present the features of each routine type in a format
that facilitates comparison. Note that there are two sections for UDFs: scalar
UDFs and table UDFs. They are sufficiently distinct as to warrant individual

attention.

Routines: Stored Procedures

A stored procedure serves as an extension to clients that runs on the database
server. They can be invoked from a client application or another routine with
a CALL statement. Stored procedures and their calling programs exchange
data using parameters defined in the CREATE PROCEDURE statement. Stored
procedures can also return result sets to their callers.

Benefits

Enable multiple SQL statements to be issued by a single invocation
from the caller, thus minimizing data transfer between the client
and the database server. The more SQL statements you include in a
stored procedure, the lower the data transfer costs for each
individual statement, as compared to issuing the same statements
from the client. Note that if only one SQL statement is invoked in a
stored procedure, the overhead in setting up this invocation may
outweigh the benefit in network traffic savings.

Isolate database logic from application logic.
Can return multiple result sets.

If invoked from an application, they behave as part of the
application.

Limitations

Cannot be invoked as part of any SQL statement except CALL.
Results cannot be directly used by another SQL statement.
Cannot preserve state between invocations.

Common uses

Provide a common interface to a group of SQL statements. For
example, given a new hire, insert rows into the employee, address,
and department tables.

Standardize application logic.

Supported languages

SQL
C/C++
Java
OLE

COBOL

Chapter 1. Introducing Routines 7

8

Note: For SQL procedures, you need to install and configure a
supported C compiler on your database server.

Related concepts:
* ['Routines (Stored Procedures, UDFs, Methods)” on page 3|

* ['Stored Procedure Parameter Modes” on page 35|

* [‘Stored Procedure Result Sets” on page 36|

Related tasks:

* “Setting Up the Application Development Environment” in the Application
Development Guide: Building and Running Applications

* ["Invoking Stored Procedures” on page 146|

Related reference:
* “CALL statement” in the SQL Reference, Volume 2
* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “DB2 Supported Software for Building and Running Applications” in the
Application Development Guide: Building and Running Applications

Routines: Scalar User-Defined Functions

Scalar UDFs enable you to extend and customize SQL. They can be invoked
in the same manner as built-in DB2® functions (for example, LENGTH). That
is, they can be referenced in SQL statements wherever an expression is valid.
Scalar UDFs accept zero or more typed values as input arguments and return
a single value.
Benefits

* Invoked as part of another SQL statement.

* Results can be processed directly by the invoking SQL statement.

* State can be maintained between invocations within a single SQL

statement by using a scratchpad.

Limitations

 Cannot do transaction management.

 Cannot return result sets.

* Limited to single result at a time.

* Not designed for single invocations.

Common uses

¢ Perform logic inside an SQL statement that SQL cannot natively
perform.

* Encapsulate scalar queries. For example, given a postal code, search
a table for the city where the postal code is found.

Programming Server Applications

Supported languages
* SQL
e C/C++
s Java
* OLE
Notes:

1. There is a limited capability for creating column UDFs. Also known as
aggregating functions, these receive a set of like values (a column of data)
and return a single answer. A user-defined column function can only be
created if it is sourced upon a built-in column function. For example, if a
distinct type SHOESIZE exists that is defined with base type INTEGER, you
could define a UDEF, AVG(SHOESIZE), as a column function sourced on the
existing built-in column function, AVG(INTEGER).

2. You can also create UDFs that return a row. These are known as row UDFs
and can only be used as a transform function for structured types. The
output of a row UDF is a single row.

Related concepts:
* [“Routines (Stored Procedures, UDFs, Methods)” on page 3
* [“Scratchpads for UDFs and Methods” on page 49|

Related tasks:
* [“Invoking UDFs” on page 148|

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Routines: Table User-Defined Functions

Like scalar UDFs, table UDFs enable you to extend and customize SQL, but
for the purpose of generating tables. Table UDFs can only be invoked in the
FROM clause of an SQL statement. Table UDFs accept zero or more typed
values as input arguments and return a table.
Benefits

* Invoked as part of an SQL statement.

* Results can be directly processed by the invoking SQL statement.

* State can be maintained between invocations within a single SQL
statement by using a scratchpad.

* Provides a set of data for processing.

Limitations

* Cannot do transaction management.

Chapter 1. Introducing Routines 9

10

* Cannot return result sets.
* Not designed for single invocations.
e Can only be used in FROM clause.

Common uses

* Provide a tabular interface to non-relational data. For example, read
a spreadsheet and produce a table, which could then be inserted
into a DB2® table.

* Encapsulate a query. For example, given the name of a city, return
all the postal codes that are valid for the city.
Supported languages
* SQL
* C/CH++
s Java'"
* OLE
 OLE DB

Related concepts:

* [‘Routines (Stored Procedures, UDFs, Methods)” on page 3|
+ [“Scratchpads for UDFs and Methods” on page 49|

+ [“Table Function Processing Model” on page 55

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Routines: Methods

Methods enable you to define behaviors for structured types. They are like
scalar UDFs, but can only be defined for structured types. Methods share all
the features of scalar UDFs, in addition to the following features:
Benefits

* Strongly associated with the structured type.

* Can be sensitive to the dynamic type of the subject type.

Limitations
* Can only return a scalar value.
* Can only be used with structured types.
» Cannot be invoked against typed tables.

Common uses
* Providing operations on structured types.
* Encapsulating the structured type.

Programming Server Applications

Supported languages
* SQL
e C/C++
s Java
* OLE

Related concepts:
« ['Routines (Stored Procedures, UDFs, Methods)” on page 3|
* [“Scratchpads for UDFs and Methods” on page 49|

Related tasks:
* ['Defining Behavior for Structured Types” on page 206|

Related reference:
¢ “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

Chapter 1. Introducing Routines 11

12 Programming Server Applications

Chapter 2.

Developing Routines

Supported Routine Programming Languages 13 Returning Result Sets From JDBC
Best Practices for Developing Routines . . . 16 Stored Procedures41
Performance Considerations for Receiving Stored Procedure Result Sets
Developing Routines16 in SQL-bodied Routines42
Security Considerations for Routmes . .20 Receiving Stored Procedure Result Sets
Library and Class Management in SQLj Applications and Routines . . 44
Considerations for Developing Routines . 23 Receiving Stored Procedure Result Sets
Restrictions for Routines.24 in JDBC Applications and Routines . . 45
Registering Routines27 Parameter Handling in PROGRAM TYPE
Writing Routines29 MAIN or PROGRAM TYPE SUB Stored
Debugging Routines . . .31 Procedures . . e V4
Conflicts When Reading and ertmg Tables UDF and Method Features o o049
From Routines . . B Scratchpads for UDFs and Methods o049
Stored Procedure Features o .. .35 Scratchpads on 32-bit and 64-bit Platforms 52
Stored Procedure Parameter Modes . . .35 Method and Scalar Function Processing
Stored Procedure Result Sets36 Model53
Stored Procedure Result Sets36 User-Defined Table Functlons hH4
Returning Result Sets From SQL and User-Defined Table Functions54
Embedded SQL Stored Procedures . . 38 Table Function Processing Model55
Returning Result Sets From SQLj Stored Table Function Execution Model for Java 57
Procedures . . 40

Supported Routine Programming Languages

In general, routines are used to improve overall performance of the database
management system by enabling application functionality to be performed on
the database server. The amount of gain realized by these efforts is limited, to
some degree, by the language chosen to write a routine.

Some of the issues you should consider before implementing routines in a
certain language are:

¢ The available skills for developing a routine in a particular language and
environment.

* The reliability and safety of a language’s implemented code.
* The scalability of routines written in a particular language.

To help assess the preceding criteria, here are some characteristics of various
supported languages:
SQL
* SQL routines are faster than Java'" routines, and roughly equivalent
in performance to trusted C/C++ routines.

© Copyright IBM Corp. 1993 - 2002 13

14

C/C++

Java

SQL routines are written completely in SQL, making them quick to
implement.

SQL routines are considered ‘safe’ by DB2® as they consist entirely
of SQL statements. Because of this, SQL routines always run
directly in the database engine, giving them good performance, and
scalability.

Both C/C++ embedded SQL and DB2 CLI routines are faster than
Java routines. They are roughly equivalent in performance to SQL
routines when run in NOT FENCED mode.

C/C++ routines are prone to error. It is recommended that you
register C/C++ routines as FENCED NOT THREADSAFE, because
routines in these languages are the most likely to damage the
engine through memory corruption. Running in FENCED NOT
THREADSAFE mode, while safer, incurs performance overhead.

For information on assessing and mitigating the risks of registering
C/C++ routines as NOT FENCED or FENCED THREADSAFE, see
the topic, "Security Considerations for Developing Routines”.

By default, C/C++ routines run in FENCED NOT THREADSAFE
mode to isolate them from damaging the execution of other
routines. Because of this, you will have one db2fmp process per
concurrently executing C/C++ routine on the database server. This
can result in scalability problems on some systems.

Java routines are slower than C/C++ or SQL routines.

Java routines are safer than C/C++ routines because control of
dangerous operations is handled by the JVM. Because of this,
reliability is increased, as it is difficult for a Java routine to damage
another routine running in the same process.

Note: To avoid potentially dangerous operations, JNI calls from
Java routines are not permitted. If you need to invoke
C/C++ code from a Java routine, you can do so by invoking
a separately cataloged C/C++ routine.

When run in FENCED THREADSAFE mode (the default), Java
routines scale well. All FENCED Java routines will share a few
JVMs (more than one JVM may be in use on the system if the Java
heap of a particular db2fmp process is approaching exhaustion).
Trusted Java routines scale well on Windows, where they share a
single Java Virtual Machine (JVM), due to DB2’s multi-threaded
engine. But they do not scale well on UNIX, where each DB2 agent
running a Java routine must have its own dedicated JVM.

Programming Server Applications

OLE

* OLE routines can be implemented in Visual C++, Visual Basic and
other languages supported by OLE.

* The speed of OLE automated routines depends on the language
used to implement them. In general, they are slower than non-OLE
C/C++ routines.

* OLE routines can only run in FENCED NOT THREADSAFE mode.

This minimizes the chance of engine corruption. This also means
that OLE automated routines do not scale well.

* OLE DB can only be used to develop table functions.
* OLE DB table functions connect to a external OLE DB data source.

* Depending on the OLE DB provider, OLE DB table functions are
generally faster than Java table functions, but slower than C/C++
or SQL-bodied table functions. However, some predicates from the
query where the function is invoked may be evaluated at the OLE
DB provider, therefore reducing the number of rows that DB2 has
to process. This frequently results in improved performance.

* OLE DB routines can only run in FENCED NOT THREADSAFE
mode. This minimizes the chance of engine corruption. This also
means that OLE automated routines do not scale well.

Related concepts:

+ [“Performance Considerations for Developing Routines” on page 16|

* [‘Security Considerations for Routines” on page 20|

+ [‘C/C++ Routines” on page 97|

* [‘Java Routines” on page 118]

Related tasks:

* “Building JDBC Routines” in the Application Development Guide: Building and
Running Applications

* “Building SQL]J Routines” in the Application Development Guide: Building and
Running Applications

¢ “Creating SQL Procedures” in the Application Development Guide: Building
and Running Applications

* “Building CLI Routines on UNIX” in the CLI Guide and Reference, Volume 1

¢ “Building C Routines on AIX” in the Application Development Guide: Building
and Running Applications

* “Building C++ Routines on AIX” in the Application Development Guide:
Building and Running Applications

Chapter 2. Developing Routines 15

* “Building CLI Routines on Windows” in the CLI Guide and Reference, Volume
1

* “Building C/C++ Routines on Windows” in the Application Development
Guide: Building and Running Applications

* “Building C Routines on HP-UX” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on HP-UX" in the Application Development Guide:
Building and Running Applications

* “Building C Routines on Linux” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on Linux” in the Application Development Guide:
Building and Running Applications

* “Building C Routines on Solaris” in the Application Development Guide:
Building and Running Applications

* “Building C++ Routines on Solaris” in the Application Development Guide:
Building and Running Applications

Best Practices for Developing Routines

16

The sections that follow feature recommended practices for developing secure
routines that perform well.

Performance Considerations for Developing Routines

One of the most significant benefits of developing routines, instead of
expanding client applications, is performance. Consider the following
performance impacts when choosing an approach for routine implementation.

NOT FENCED mode
A NOT FENCED routine runs in the same process as the database
manager. In general, running your routine as NOT FENCED results in
better performance as compared with running it in FENCED mode,
because FENCED routines run in a special DB2® process outside of
the engine’s memory.

While you can expect improved routine performance when running
routines in NOT FENCED mode, user code can accidentally or
maliciously corrupt the database or damage the database control
structures. You should only use NOT FENCED routines when you
need to maximize the performance benefits, and if you deem the
routine to be secure. (For information on assessing and mitigating the
risks of registering C/C++ routines as NOT FENCED, see the topic,
"Security Considerations for Developing Routines”.) If the routine is
not safe enough to run in the database manager’s process, use the
FENCED clause when registering the routine.

Programming Server Applications

If an abnormal termination occurs while you are running a NOT
FENCED routine, the database manager will attempt an appropriate
recovery if the routine is registered as NO SQL. However, for routines
not defined as NO SQL, the database manager will fail.

NOT FENCED routines must be precompiled with the WCHARTYPE
NOCONVERT option if the routine uses GRAPHIC or DBCLOB data.

FENCED THREADSAFE mode
FENCED THREADSAFE routines run in the same process as other
routines. More specifically, non-Java routines share one process, while
Java™ routines share another process, separate from routines written
in other languages. This separation protects Java routines from the
potentially more error prone routines written in other languages. Also,
the process for Java routines contains a JVM, which incurs a high
memory cost and is not used by other routine types. Multiple
invocations of FENCED THREADSAFE routines share resources, and
therefore incur less system overhead than FENCED NOT
THREADSAFE routines, which each run in their own dedicated
process.

If you feel your routine is safe enough to run in the same process as
other routines, use the THREADSAFE clause when registering it. As
with NOT FENCED routines, information on assessing and mitigating
the risks of registering C/C++ routines as FENCED THREADSAFE is
in the topic, "Security Considerations for Developing Routines”.

If a FENCED THREADSAFE routine abends, only the thread running
this routine is terminated. Other routines in the process continue
running. However, the failure that caused this thread to abend may
adversely affect other routine threads in the process, causing them to
trap, hang, or have damaged data. After one thread abends, the
damaged process is no longer used for new routine invocations. Once
all the active users complete their jobs in this process, it is terminated.

When you register Java routines, they are deemed THREADSAFE
unless you indicate otherwise. All other LANGUAGE types are NOT
THREADSAFE by default. Routines using LANGUAGE OLE and OLE
DB may not be specified as THREADSAFE.

NOT FENCED routines must be THREADSAFE. It is not possible to
register a routine as NOT FENCED NOT THREADSAFE (SQLCODE
-104).

Users on UNIX® can see their Java and C THREADSAFE processes by
looking for db2fmp (Java) or db2fmp (C).

FENCED NOT THREADSAFE mode
FENCED NOT THREADSAFE routines each run in their own
dedicated process. If you are running numerous routines, this can

Chapter 2. Developing Routines 17

have a detrimental effect on database system performance. If the
routine is not safe enough to run in the same process as other
routines, use the NOT THREADSAFE clause when registering the
routine.

On UNIX, NOT THREADSAFE processes appear as db2fmp (pid)
(where pid is the process id of the agent using the fenced mode
process) or as db2fmp (idle) for a pooled NOT THREADSAFE
db2fmp.

Java routines
For Java routines running on UNIX platforms, scalability may be an
issue if NOT FENCED is specified. This is due to the nature of the
DB2 UNIX process model, which is one process per agent. As a result,
each invocation of a NOT FENCED Java routine will require its own
JVM. This can result in poor scalability, because JVMs have a large
memory footprint. Many invocations of NOT FENCED routines on a
UNIX-based DB2 server will use a significant portion of system
memory.

This is not the case for Java routines running on Windows® NT and
Windows 2000, where each DB2 agent is represented by a thread in a
process shared with other DB2 agent threads. This model is scalable
as a single JVM is shared among all the DB2 agent threads in the
process.

If you intend to run a Java routine with large memory requirements, it
is recommended that you register it as FENCED NOT THREADSAFE.
For FENCED THREADSAFE Java routine invocations, DB2 attempts
to choose a threaded Java fenced mode process with a Java heap that
is large enough to run the routine. Failure to isolate large heap
consumers in their own process may result in out of Java heap errors
in multithreaded Java db2fmp processes. If your Java routine does not
fall into this category, FENCED routines will run better in threadsafe
mode where they can share a small number of JVMs.

C/C++ routines
C or C++ routines are generally faster than Java routines, but are
more prone to errors, memory corruption, and crashing. For these
reasons, the ability to perform memory operations makes C or C++
routines risky candidates for THREADSAFE or NOT FENCED mode
registration. These risks can be mitigated by adhering to programming
practices for secure routines (see the topic, "Security Considerations
for Developing Routines”), and thoroughly testing your routine.

SQL-bodied routines
SQL-bodied routines are also generally faster than Java routines, and

18 Programming Server Applications

usually share comparable performance with C routines. SQL routines
always run in NOT FENCED mode, providing a further performance
benefit over external routines.

Scratchpads
A scratchpad is a block of memory that can be assigned to UDFs and
methods. The scratchpad only applies to the individual reference to
the routine in an SQL statement. If there are multiple references to a
routine in a statement, each reference has its own scratchpad. A
scratchpad enables a UDF or method to save its state from one
invocation to the next.

For UDFs and methods with complex initializations, you can use
scratchpads to store any values required in the first invocation for use
in all future invocations. Other UDFs and methods may require their
values to be saved from invocation to invocation.

Use VARCHAR parameters instead of CHAR parameters
You can improve the performance of your routines by using
VARCHAR parameters instead of CHAR parameters. Using
VARCHAR data types instead of CHAR data types prevents DB2 from
padding parameters with spaces before passing the parameter and
decreases the amount of time required to transmit the parameter
across a network.

For example, if your client application passes the string "A SHORT
STRING” as a CHAR(200) parameter to a routine, DB2 has to pad the
parameter with 186 spaces, null-terminate the string, then send the
entire 200 character string and null-terminator across the network to
the routine.

In comparison, passing the string "A SHORT STRING" as a
VARCHAR(200) parameter to a routine results in DB2 simply passing
the 14 character string and a null terminator across the network.

Related concepts:

* “WCHARTYPE Precompiler Option in C and C++” in the Application
Development Guide: Programming Client Applications

“WCHARTYPE CONVERT Precompile Option” in the Application
Development Guide: Building and Running Applications

* ['Security Considerations for Routines” on page 20|
[‘C/C++ Routines” on page 97|

* [‘Java Routines” on page 118]

* ['Restrictions for Routines” on page 24|

* [‘Library and Class Management Considerations for Developing Routines”|

on page 23|

Chapter 2. Developing Routines 19

Related reference:

“CALL statement” in the SQL Reference, Volume 2

“CREATE FUNCTION statement” in the SQL Reference, Volume 2
“CREATE PROCEDURE statement” in the SQL Reference, Volume 2
“CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
“CREATE METHOD statement” in the SQL Reference, Volume 2

Security Considerations for Routines

Developing and deploying routines provides you with an opportunity to
greatly improve the performance and effectiveness of your database
applications. There can, however, be security risks if the deployment of
routines is not managed correctly by the database administrator. The
following sections describe security risks and means by which you can
mitigate these risks. The security risks are followed by a section on how to
safely deploy routines whose security is unknown.

Security Risks:

NOT FENCED routines can access database manager resources

NOT FENCED routines run in the same process as the database
manager. Because of their close proximity to the database engine,
NOT FENCED routines can accidentally or maliciously corrupt the
database manager’s shared memory, or damage the database control
structures. Either form of damage will cause the database manager to
fail. NOT FENCED routines can also corrupt databases and their
tables.

To ensure the integrity of the database manager and its databases, you
must thoroughly screen routines you intend to register as NOT
FENCED. These routines must be fully tested, debugged, and exhibit
no unexpected side-effects. In the examination of the routine, pay
close attention to memory management and the use of static variables.
This is where the greatest potential for corruption lies, particularly in
languages other than Java.

In order to register a NOT FENCED routine, the
CREATE_NOT_FENCED_ROUTINE authority is required. When
granting the CREATE_NOT_FENCED_ROUTINE authority, be aware
that the recipient can potentially gain unrestricted access to the
database manager and all its resources.

FENCED THREADSAFE routines can access memory in other FENCED
THREADSAEFE routines

FENCED THREADSAFE routines run as threads inside a shared
process. Each of these routines are able to read the memory used by
other routine threads in the same process. Therefore, it is possible for

20 Programming Server Applications

one threaded routine to collect sensitive data from other routines in
the threaded process. Another risk inherent in the sharing of a single
process, is that one routine thread with flawed memory management
can corrupt other routine threads, or cause the entire threaded process
to crash.

To ensure the integrity of other FENCED THREADSAFE routines, you
must thoroughly screen routines you intend to register as FENCED
THREADSAFE. These routines must be fully tested, debugged, and
exhibit no unexpected side-effects. In the examination of the routine,
pay close attention to memory management and the use of static
variables. This is where the greatest potential for corruption lies,
particularly in languages other than Java.

In order to register a FENCED THREADSAFE routine, the
CREATE_EXTERNAL_ROUTINE authority is required. When granting
the CREATE_EXTERNAL_ROUTINE authority, be aware that the
recipient can potentially monitor or corrupt the memory of other
FENCED THREADSAFE routines.

Write access to the database server by the owner of fenced processes can

result in database manager corruption
The user ID under which fenced processes run is defined by the
db2icrt (create instance) or db2iupdt (update instance) system
commands. This user ID must not have write access to the directory
where routine libraries and classes are stored (in UNIX®
environments, sqllib/function; in Windows® environments,
sqllib\function). This user ID must also not have write access to any
database, operating system, or otherwise critical files and directories
on the database server.

If the owner of fenced processes does have write access to various
critical resources on the database server, the potential for system
corruption exists. For example, a database administrator registers a
routine received from an unknown source as FENCED NOT
THREADSAFE, thinking that any potential harm can be averted by
isolating the routine in its own process. However, the user ID that
owns fenced processes has write access to the sqllib/function
directory. Users invoke this routine, and unbeknownst to them, it
overwrites a library in sqllib/function with an alternate version of a
routine body that is registered as NOT FENCED. This second routine
has unrestricted access to the entire database manager, and can
thereby distribute sensitive information from database tables, corrupt
the databases, collect authentication information, or crash the database
manager.

Chapter 2. Developing Routines 21

22

Ensure the user ID that owns fenced processes does not have write
access to critical files or directories on the database server (especially
sqllib/function and the database data directories).

Vulnerability of routine libraries and classes
If access to the directory where routine libraries and classes are stored
is not controlled, routine libraries and classes can be deleted or
overwritten. As discussed in the previous item, the replacement of a
NOT FENCED routine body with a malicious (or poorly coded)
routine can severely compromise the stability, integrity, and privacy of
the database server and its resources.

To protect the integrity of routines, you must manage access to the
directory containing the routine libraries and classes. Ensure that the
fewest possible number of users can access this directory and its files.
When assigning write access to this directory, be aware that this
privilege can provide the owner of the user ID unrestricted access to
the database manager and all its resources.

Deploying potentially insecure routines:

If you happen to acquire a routine from an unknown source, be sure you
know exactly what it does before you build, register, and invoke it. It is
recommend that you register it as FENCED and NOT THREADSAFE unless
you have tested it thoroughly, and it exhibits no unexpected side-effects.

If you need to deploy a routine that does not meet the criteria for secure
routines, register the routine as FENCED and NOT THREADSAFE. To ensure
that database integrity is maintained, FENCED and NOT THREADSAFE
routines:

* Run in a separate DB2® process, shared with no other routines. If they
abnormally terminate, the database manager will be unaffected.

* Use memory that is distinct from memory used by the database. An
inadvertent mistake in a value assignment will not affect the database
manager.

Related concepts:
* ['Routines (Stored Procedures, UDFs, Methods)” on page 3|
* ['Performance Considerations for Developing Routines” on page 16

* ['Restrictions for Routines” on page 24|

* ['Library and Class Management Considerations for Developing Routines”|

on page 23|

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Programming Server Applications

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2
¢ “GRANT (Routine Privileges) statement” in the SQL Reference, Volume 2
+ “REVOKE (Routine Privileges) statement” in the SQL Reference, Volume 2

Library and Class Management Considerations for Developing Routines

The bodies of external routines reside in libraries and classes stored on the
database server. These files are not backed up or protected in any way by
DB2. The CREATE statements that register routines merely add routine
definition information to the database catalogs. The routine library or class
exists only in the location it was installed, and it could be deleted or altered
while the catalog entry referring to it remains unchanged.

To preserve the integrity of the invoking clients and routines that depend on
the routine, you must prevent the routine body from being inadvertently or
intentionally deleted or replaced. This can be done by managing access to the
directory containing the routine and by protecting the routine body itself.

If you need to change the body of a routine, do not recompile and relink the
routine to the same file name (for example, sqllib/function/foo.a) the current
routine is using while the database manager is running. Operating system
level caching can cause such an operation to fail. If it is necessary to change
the body of a routine without stopping and restarting DB2, complete the
following steps:

1. Create the new body for the routine with a different library or class name.

2. Use the ALTER statement to change the routine’s EXTERNAL NAME to
reference the updated routine body.

Once the ALTER updates the routine’s catalog entries, all subsequent
invocations of the updated routine will point to the new routine body.

For updating Java' routines that are built into JAR files, you must issue a
CALL SQLJ.REFRESH_CLASSES() statement to force DB2® to load the new
classes. If you do not issue the CALL SQLJ.REFRESH_CLASSES() statement
after you update Java routine classes, DB2 continues to use the previous
versions of the classes. DB2 refreshes the classes when a COMMIT or
ROLLBACK occurs. The CALL SQLJ.REFRESH_CLASSES() statement only
applies to FENCED routines. To update NOT FENCED routines, you must
either restart the database manager and replace the class, or use the steps
described above to create a new class and use the ALTER statement to
reference it.

The DB2 library manager dynamically adjusts its library caching according to
your workload. For optimal performance consider the following;:

* Keep the number of routines in your libraries as small as possible. If you
are including multiple routines in the same library, ensure that you group

Chapter 2. Developing Routines 23

24

them based on if they are invoked in the same time frame. Consider a
scenario where in a number of applications a call to the stored procedure,
ProcA is followed by a call to the stored procedure, ProcB. This is a case
where it may be appropriate to include ProcA and ProcB in the same
library. With a library caching scheme, it is better to have numerous smaller
libraries than few large libraries.

The load cost for a library in the THREADSAFE C process is paid only
once for libraries that are consistently in use by THREADSAFE C routines.
After the routine’s first invocation, all subsequent invocations, from any
thread in the process, do not need to load the routine’s library.

Note: The bodies of SQL-bodied routines are part of the database, and as

such, will be backed up with other database objects. However, like
external routines, their bodies are prone to being altered, and therefore
require the same protection.

Related concepts:

« ["Performance Considerations for Developing Routines” on page 16|

* [“Security Considerations for Routines” on page 20|

* [‘Restrictions for Routines” on page 24|

Related reference:

“CREATE FUNCTION statement” in the SQL Reference, Volume 2
“CREATE PROCEDURE statement” in the SQL Reference, Volume 2
“CREATE METHOD statement” in the SQL Reference, Volume 2
“ALTER FUNCTION statement” in the SQL Reference, Volume 2
“ALTER METHOD statement” in the SQL Reference, Volume 2
“ALTER PROCEDURE statement” in the SQL Reference, Volume 2

Restrictions for Routines

The following are restrictions for developing routines.

In pre-Version 8 editions of DB2, CALL was not a compiled statement and
data type matching was not enforced. The data types you register a routine
with must match the data types used in the routines. See the tables with
SQL type mappings to Java, C, OLE automation, and OLE DB data types.

UDFs cannot return result sets. All cursors opened by a UDF with SQL
must be closed by the time the final call is completed.

Routines should not create new threads.
You cannot issue any connection level APIs from UDFs or methods.

Input to, and output from the screen and keyboard is not possible from
routines. Hence, you should not use the standard I/O streams; for example,
calls to System.out.printin() in Java, printf() in C/C++, or display in

Programming Server Applications

COBOL. In the process model of DB2, routines run in the background and
cannot write to the screen. However, routines can write to a file.

For FENCED routines that run on UNIX, the target directory where the file
is to be created, or the file itself, must have the appropriate permissions
such that the owner of the sql1ib/adm/.fencedid file can create it or write
to it. For NOT FENCED routines, the instance owner must have create and
write permissions for the directory in which the file is opened.

Note: DB2® does not attempt to synchronize any external input or output
performed by a routine with DB2’s own transactions. So, for
example, if a UDF writes to a file during a transaction, and that
transaction is later backed out for some reason, no attempt is made
to discover or undo the writes to the file.

You cannot execute any connection-related statements or commands in
routines, including:

- BACKUP

— CONNECT

— CONNECT TO

— CONNECT RESET

— CREATE DATABASE

— DROP DATABASE

— FORWARD RECOVERY
— RESTORE

In general, DB2 does not restrict the use of operating system functions.
However, there are a few exceptions:

1. It is imperative that no routine install its own signal handlers. Failure
to adhere to this restriction can result in unexpected failures, database
abends, or other problems. Installing signal handlers may also interfere
with operation of the JVM for Java " routines.

2. System calls that terminate a process may abnormally terminate one of
DB2’s processes and result in system or application failure.

Other system calls may also cause problems if they interfere with the
normal operation of DB2; for example, a UDF that attempts to unload a
library containing a UDF from memory could cause severe problems. Be
careful in coding and testing any routines containing system calls.

Routines must not contain commands that would terminate the current
process. A routine must always return control to DB2 without terminating
the current process.

When returning result sets from nested stored procedures, you can open a
cursor with the same name on multiple nesting levels. However,

Chapter 2. Developing Routines 25

26

pre-version 8 applications will only be able to access the first result set that
was opened. This restriction does not apply to cursors that are opened with
a different package level.

Do not change the bodies of routines while the database is active. If it is
necessary to change the body of a routine without stopping and restarting
DB2, create the new body for the routine with a different library name. The
ALTER statement can then be used to change the routine’s EXTERNAL
NAME to reference the new body.

The values of all environment variables with names beginning with 'DB2'
are captured at the time the database manager is started with db2start, and
are available in all routines, whether they are FENCED or NOT FENCED.
The only exception is the DB2CKPTR environment variable. Other
environment variables are accessible from NOT FENCED routines, but not
from the FENCED routine process (for example, LIBPATH). Note that the
environment variables are captured. Any changes to the environment
variables after db2start is issued are not available to the routines.

When using protected resources (resources that allow only one process
access at a time inside routines), you should try to avoid deadlocks between
routines. If two or more routines deadlock, DB2 will not be able to detect or
resolve the condition, resulting in hung routine processes.

If you allocate dynamic memory in a routine, it should be freed before
returning to DB2. Failure to do so results in a memory leak, and the
continual growth of DB2 processes, which could eventually lead to
out-of-memory conditions.

For UDFs and methods, the scratchpad facility can be used to anchor
dynamic memory needed across multiple invocations. If you use a
scratchpad in this manner, specify the FINAL CALL attribute in the
CREATE statement for the UDF or method so that it can free the allocated
memory at end-of-statement processing.

Do not allocate storage for any parameters in your routine on the database
server. The database manager automatically allocates storage based upon
the parameter declaration in the CREATE statement. Do not alter any
storage pointers for parameters in the routine. Attempting to change a
pointer with a locally created storage pointer may result in memory leaks,
data corruption, or abends.

Do not use static or global data in routines. DB2 cannot guarantee that the
memory used by static or global variables will be untouched between
routine invocations. For UDFs and methods, you can use scratchpads to
store values for use between invocations.

All SQL argument values are buffered. This means that a copy of the value
is made and presented to the routine. If there are changes made to the
input parameters of a routine, these changes will have no effect on SQL
values or processing. However, if a routine writes more data to an input or

Programming Server Applications

output parameter than is specified by the CREATE statement, memory
corruption has occurred, and the routine can abend.

Related concepts:

¢ ['Performance Considerations for Developing Routines” on page 16|

* ['Security Considerations for Routines” on page 20|
* [‘SQL Data Type Handling in C/C++ Routines” on page 106|

Related reference:

* “CALL statement” in the SQL Reference, Volume 2

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

* “Supported SQL Data Types in C and C++” in the Application Development
Guide: Programming Client Applications

* “Data Type Mappings between DB2 and OLE DB” in the Application
Development Guide: Programming Client Applications

* “ALTER FUNCTION statement” in the SQL Reference, Volume 2

¢ “ALTER METHOD statement” in the SQL Reference, Volume 2

* “ALTER PROCEDURE statement” in the SQL Reference, Volume 2
[‘Supported SQL Data Types in OLE DB” on page 143
[‘Supported SQL Data Types in OLE Automation” on page 133

Registering Routines

Registering a routine is the act of coupling a custom-built application library
with the database. Until the routine is registered, it cannot be invoked as a
routine.

For the routine to work properly, it is vital that you register it with the
applicable clauses. Choices you made while writing the routine need to be
reflected in its registration. For example, there needs to be an exact mapping
between the parameters passed from a client application to a routine. To
simplify matters, many of the clauses for registering the different types of
routines are common.

Prerequisites:

For the list of privileges required to register routines, see the following
statements:

* CREATE FUNCTION

Chapter 2. Developing Routines 27

* CREATE METHOD
* CREATE TYPE
* CREATE PROCEDURE

Procedure:

To register a routine, issue the CREATE statement with the applicable clauses
that correspond to the type of routine you are working with. The statements
are as follows: CREATE FUNCTION, CREATE METHOD, CREATE TYPE, and
CREATE PROCEDURE.

For the registration of methods, issuing the CREATE TYPE statement is the
first step, and issuing the CREATE METHOD statement is the second step.
The CREATE METHOD statement only addresses attributes that relate to a
method’s signature.

Once you have registered your routine, you can invoke it from a client
application or a calling routine.

Related concepts:
+ [“Routines (Stored Procedures, UDFs, Methods)” on page 3

+ [“Parameter Styles for External Routines” on page 71|

+ ["Performance Considerations for Developing Routines” on page 16|

* [“Security Considerations for Routines” on page 20|

Related tasks:
* ["Writing Routines” on page 29|

Related reference:

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

Related samples:

* “spcreate.db2 -- How to catalog the stored procedures contained in
spserver.sqc ”

* “spserver.db2 -- To create a set of SQL procedures ”
» “UDFsCreate.db2 -- How to catalog the UDFs contained in UDFsqlsv.java ”

28 Programming Server Applications

Writing Routines

Each of the three types of routines (stored procedures, UDFs, and methods)
share a great deal in common with regards to how they are written. For
instance, they employ some of the same parameter styles, they support the
use of SQL through various client interfaces (embedded SQL, CLI, and JDBC),
and they can invoke other routines. To this end, the following steps represent
a single approach for writing routines.

There are some tasks that are not common in the writing of all types of
routines. For example, result sets are specific to stored procedures, and
scratchpads are specific to UDFs and methods. When you come across a step
not applicable to the type of routine you are developing, go to the step that
follows it.

Prerequisites:

Before writing a routine, you must decide the following:
* The type of routine you need. (See Routines: Stored Procedures.)

* The programming language you will use to write it. (See Supported
Routine Programming Languages.)

¢ Which interface to use if you require SQL statements in your routine. (See
When to Use DB2 CLI or Embedded SQL.)

See also the topics on Security, Library and Class Management, and
Performance considerations.

Procedure:

To create a routine body, you must:

1. Applicable only to external routines. Accept input parameters from the
invoking application or routine and declare output parameters. How a
routine accepts parameters is dependent on the parameter style you will
register the routine with. Each parameter style defines the set of
parameters that are passed to the routine body and the order that the
parameters are passed.

For example, the following is a signature of a UDF body written in C
(using sqludf.h) for PARAMETER STYLE SQL:

SQL_API RC SQL_API FN product (SQLUDF_DOUBLE =*inl,
SQLUDF_DOUBLE *in2,
SQLUDF_DOUBLE *outProduct,
SQLUDF_NULLIND *in1NullInd,
SQLUDF_NULLIND *in2NullInd,
SQLUDF_NULLIND #*productNullInd,
SQLUDF_TRAIL_ARGS)

Chapter 2. Developing Routines 29

30

2. Add the logic that the routine is to perform. Some tools at your disposal
for writing the body of the routine are as follows:

* Calling other routines (nesting), or calling the current routine
(recursion).

* In routines that are defined to have SQL (CONTAINS SQL, READS SQL,
or MODIFIES SQL), the routine may issue SQL statements. The types of
statements that can be invoked is controlled by how routines are
registered.

* In external UDFs and methods, use scratchpads to save state from one
call to the next.

* In SQL procedures, use condition handlers to determine the SQL
procedure’s behavior when a specified condition occurs. You can define
conditions based on SQLSTATEs.

3. Applicable only to stored procedures. Return one or more result sets. In
addition to individual parameters that are exchanged with the calling
application, stored procedures have the capability to return multiple result
sets. Only SQL routines and CLI, ODBC, JDBC, and SQLj routines and
clients can accept result sets.

In addition to writing your routine, you also need to register it before you can
invoke it. This is done with the CREATE statement that matches the type of
routine you are developing. In general, the order in which you write and
register your routine does not matter. However, the registration of a routine
must precede its being built if it issues SQL that references itself. In this case,
for a bind to be successful, the routine’s registration must have already
occurred.

Related concepts:

* “When to Use DB2 CLI or Embedded SQL” in the Application Development
Guide: Programming Client Applications

* [‘Parameter Styles for External Routines” on page 71|

* ["Performance Considerations for Developing Routines” on page 16

* [‘Security Considerations for Routines” on page 20|

* ["C/C++ Routines” on page 97|

* ['Java Routines” on page 118§|

* [‘Restrictions for Routines” on page 24|

* ['Library and Class Management Considerations for Developing Routines”|

on page 23|

* I"OLE Automation Routine Design” on page 130
¢ ['OLE DB User-Defined Table Functions” on page 13§

* [‘Supported Routine Programming Languages” on page 13|

Programming Server Applications

Related reference:

¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
¢ “CREATE METHOD statement” in the SQL Reference, Volume 2

Related samples:

* “spserver.c -- Definition of various types of stored procedures (CLI)”
* “spserver.db2 -- To create a set of SQL procedures ”

* “spserver.sqc -- A variety of types of stored procedures (C)”

* “spserver.sqC -- A variety of types of stored procedures (C++)”

* “SpServer.java -- Provide a variety of types of stored procedures to be
called from (JDBC)”

* “SpServer.sqlj -- Provide a variety of types of stored procedures to be called
from (SQLj)”

Debugging Routines

Before deploying routines on a production server you must thoroughly test
and debug them on a test server. This is especially important for routines that
need to be registered as NOT FENCED because they have unrestricted access
to the database manager’s memory, its databases, and database control
structures. FENCED THREADSAFE routines also demand close attention
because they share memory with other routines.

Procedure:

Checklist of common routine problems
To ensure that a routine executes properly, check that:

* The routine is registered properly. The parameters provided in the
CREATE statement must match the arguments handled by the
routine body. With this in mind, check the following specific items:

— The data types of the arguments used by the routine body are
appropriate for the parameter types defined in the CREATE
statement.

— The routine does not write more bytes to an output variable than
were defined for the corresponding result in the CREATE
statement.

— The routine arguments for SCRATCHPAD, FINAL CALL,
DBINFO are present if the routine was registered with
corresponding CREATE options.

Chapter 2. Developing Routines 31

32

— For external routines, the value for the EXTERNAL NAME
clause in the CREATE statement must match the routine library
and entry point (case sensitivity varies by platform).

— For C++ routines, the C++ compiler applies type decoration to
the entry point name. Either the type decorated name needs to
be specified in the EXTERNAL NAME clause, or the entry point
should be defined as extern "C" in the user code.

— The routine name specified during invocation must match the
registered name (defined in the CREATE statement) of the
routine. By default, routine identifiers are folded to uppercase.
This does not apply to delimited identifiers, which are not folded
to uppercase, and are therefore case sensitive.

The routine must be placed in the directory path specified in the
CREATE statement, or if no path is given, where DB2 looks for it
by default. For UDFs, methods, and fenced stored procedures,
this is: sq11ib/function (UNIX) or sqllib\function (Windows).
For unfenced stored procedures, this is:
sq11ib/function/unfenced (UNIX) or sq11ib\function\unfenced
(Windows).

The routine is built using the correct calling sequence, precompile
(if embedded SQL), compile, and link options.

The application is bound to the database, except if it is written
using DB2 CLI, ODBC, or JDBC. The routine must also be bound if
it contains SQL and does not use any of these interfaces.

The routine accurately returns any error information to the client
application.

All applicable call types are accounted for if the routine was
defined with FINAL CALL.

The system resources used by routines are returned.

Routine debugging techniques
To debug a routine, use the following techniques:

The Development Center provides extensive debugging tools for
SQL-bodied and Java stored procedures.

It is not possible to write diagnostic data to screen from a routine. If
you intend to write diagnostic data to a file, ensure that you write
to a globally accessible directory such as \tmp. Do not write to
directories used by database managers or databases.

For stored procedures, a safe alternative is to write diagnostic data
to an SQL table. The stored procedure you are testing must be
registered with the MODIFIES SQL DATA clause in order to be able
to write to an SQL table. If you need an existing stored procedure
to write data (or no longer write data) to an SQL table, you must
drop and re-register the stored procedure with (or without) the

Programming Server Applications

MODIFIES SQL DATA clause. Before dropping and re-registering
the stored procedure, be aware of its dependencies.

* You can debug your routine locally by writing a simple application
that invokes the routine entry point directly. Consult your compiler
documentation for information on using the supplied debugger.

Related concepts:

. I”Security Considerations for Routines” on page 20|

Related tasks:
* ['Debugging Stored Procedures in Java” on page 125|

. | ‘Displaying Error Messages for SQL Procedures” on page 62|

* “Debugging : Development Center help” in the Help: Development Center

Related reference:

* “Identifiers” in the SQL Reference, Volume 1

¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

¢ “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “BIND Command” in the Command Reference

* “PRECOMPILE Command” in the Command Reference

¢ “CREATE METHOD statement” in the SQL Reference, Volume 2

* [“Supported SQL Data Types in OLE DB” on page 143

* [“Syntax for Passing Arguments to Routines Written in C/C++, OLE, o1
COBOL” on page 74|

[‘Supported SQL Data Types in OLE Automation” on page 133
* [“Supported SQL Data Types in C/C++" on page 103|

Conflicts When Reading and Writing Tables From Routines

To preserve the integrity of the database, it is necessary to avoid conflicts
when reading and writing to tables. For example, suppose an application is
updating the EMPLOYEE table, and the statement calls a routine. Suppose
that the routine tries to read the EMPLOYEE table and encounters the row
being updated. The routine sees the row while it is in an indeterminate state -
perhaps some columns of the row have been updated while other have not. If
the routine acts on this partially updated row, it can take incorrect actions. To
avoid this sort of problem, DB2® does not allow operations that conflict on
any table.

Chapter 2. Developing Routines 33

34

To describe how DB2 avoids conflicts when reading and writing tables from
routines, the following two terms are needed:

top-level statement
A top-level statement is any SQL statement issued from an
application, or from a stored procedure that was invoked as a
top-level statement.

table access context
A table access context refers to the scope where conflicting operations
on a table are allowed. A table access context is created whenever:
* A top-level statement issues an SQL statement.

e A UDF or method is invoked.

For example, when an application calls a stored procedure, the CALL
is a top-level statement and therefore gets a table access context. If the
stored procedure does an UPDATE, the UPDATE is also a top-level
statement (since the stored procedure was invoked as a top-level
statement) and therefore gets a table access context. If the UPDATE
invokes a UDF, the UDF gets a separate table access context and SQL
statements inside the UDF are not top-level statements.

Once a table has been read or written, it is protected from conflicts within the
top-level statement that made the access. The table can be read or written
from a different top-level statement or from a routine invoked from a different
top-level statement.

The following rules are applied:

1. Within a table access context, a given table may be both read and written
without causing a conflict.

2. If a table is being read within a table access context then other contexts
may also read the table. If any other context attempts to write to the table,
however, a conflict occurs.

3. If a table is being written within a table access context, then no other
context may read or write to the table without causing a conflict.

If a conflict occurs, an error (SQLCODE -746, SQLSTATE 57053) is returned to
the statement that caused the conflict.

The following is an example of table read and write conflicts:

Suppose an application issues the statement:
UPDATE t1 SET cl = udfl(c2)

UDF1 contains the statements:

DECLARE curl CURSOR FOR SELECT cl, c2 FROM t1
OPEN curl

Programming Server Applications

This will result in a conflict because rule 3 is violated. This form of conflict
can only be resolved by redesigning the application or UDF.

The following does not result in a conflict:

Suppose an application issues the statements:

DECLARE cur2 CURSOR FOR SELECT udf2(cl) FROM t2
OPEN cur2

FETCH cur2 INTO :hv

UPDATE t2 SET c2 = 5

UDE2 contains the statements:

DECLARE cur3 CURSOR FOR SELECT cl, c2 FROM t2
OPEN cur3
FETCH cur3 INTO :hv

With the cursor, UDF2 is allowed to read table T2 since two table access
contexts can read the same table. The application is allowed to update T2
even though UDF?2 is reading the table because UDF2 was invoked in a
different application level statement than the update.

Related concepts:
+ [‘Routines (Stored Procedures, UDFs, Methods)” on page 3
* [‘SQL in External Routines” on page 89|

Stored Procedure Features

Stored

Stored Procedures have special capabilities for exchanging data with invoking
applications and routines. The sections that follow describe stored procedure
parameter modes, the capability of stored procedures to return result sets, and

the option of accepting parameters in the style of a main routine or a
subroutine.

Procedure Parameter Modes

Client applications and calling routines exchange information with stored

procedures through parameters and result sets. The parameters for routines

are defined as having specific data types. Unlike other routines, the

parameters for stored procedures are also defined by the direction the data is

traveling (the parameter mode).

There are three types of parameters for stored procedures:
* IN parameters: data passed to the stored procedure.
¢ OUT parameters: data returned by the stored procedure.

Chapter 2. Developing Routines

35

36

* INOUT parameters: data passed to the stored procedure that is, during
stored procedure execution, replaced by data to be returned from the stored
procedure.

The mode of parameters and their data types are defined when a stored
procedure is registered with the CREATE PROCEDURE statement.

Related concepts:

* [“Stored Procedure Result Sets” on page 36|

Related tasks:
* ['Registering Routines” on page 27|

Related reference:
* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

Stored Procedure Result Sets

The following sections describe the ability of stored procedures to return
result sets, and how to return and receive them using various interfaces.

Stored Procedure Result Sets

In addition to exchanging parameters, stored procedures can pass information
to invokers by returning result sets. Result sets can be accepted by
SQL-bodied routines, and routines and applications programmed in the
following interfaces:

. CLI
- JDBC
. SQLj
- ODBC

Stored procedures pass result sets to their invokers through cursors. The
stored procedure body must contain a cursor for every result set you need to
return. While you can fetch rows from a result set cursor within the stored
procedure, only unfetched rows are passed to the invoker as the result set.
When exiting a stored procedure, leave the cursors that correspond to the
result sets open. Multiple result sets are returned in the order in which you
open their cursors.

When declaring a cursor for a result set, it is strongly recommended that you
specify the destination in the WITH RETURN TO clause of the DECLARE
CURSOR statement (for SQL procedures, this is mandatory). To return the
result set to the invoker, whether the invoker is an application or a routine,
specify WITH RETURN TO CALLER. To return the result set directly to the
application, bypassing any intermediate nested routines, specify WITH

Programming Server Applications

RETURN TO CLIENT. In external routines, cursors are defined as WITH
RETURN TO CALLER by default, unless they are explicitly defined as WITH
RETURN TO CLIENT.

When registering a stored procedure with the CREATE PROCEDURE
statement, indicate the number of result sets that it returns with the
DYNAMIC RESULT SETS clause. This value is stored in the RESULT_SETS
column in the SYSCAT.ROUTINES view. If the number of result sets returned
from a stored procedure is different than the number specified in the CREATE
PROCEDURE statement, a warning is issued (SQLCODE +464, SQLSTATE
0100E). For PARAMETER STYLE JAVA stored procedures, the number of
result sets in the CREATE PROCEDURE statement must match the number of
ResultSet[] parameters in the Java'" method signature.

The invoker can DESCRIBE the received result sets. Note that if the same
cursor is opened on multiple nesting levels, applications running on DB2®
UDB Version 7 clients can only DESCRIBE the first result set that is opened.

Result sets must be processed in a serial fashion by the invoker (if the invoker
is not an SQL-bodied routine). A cursor is automatically opened on the first
result set and a special call (SQLMoreResults for DB2 CLI, getMoreResults for
JDBC, getNextResultSet for SQLj) is provided to both close the cursor on one
result set and to open it on the next.

To receive result sets in SQL-bodied routines, you must DECLARE and
ASSOCIATE result set locators to the stored procedure you expect will return
result sets. You must then ALLOCATE each cursor you expect will be
returned to a result set locator. Once this is done, you can fetch rows from the
result sets.

Note: A COMMIT issued from within the stored procedure or from the
application will close any result sets that are not for WITH HOLD
cursors. A ROLLBACK issued from the application or from the stored
procedure will close all result set cursors. After a COMMIT or a
ROLLBACK is made from within a stored procedure, cursors may be
opened and returned as result sets.

Related concepts:

* ['Routines: Stored Procedures” on page 7|

* “Cursors in CLI Applications” in the CLI Guide and Reference, Volume 1

* “Result Set Terminology in CLI Applications” in the CLI Guide and Reference,
Volume 1

* “Result Set Retrieval into Arrays in CLI Applications” in the CLI Guide and
Reference, Volume 1

Chapter 2. Developing Routines 37

38

Related tasks:

“Declaring and Using Cursors in Static SQL Programs” in the Application
Development Guide: Programming Client Applications

“Declaring and Using Cursors in Dynamic SQL Programs” in the
Application Development Guide: Programming Client Applications

‘Returning Result Sets From SQL and Embedded SQL Stored Procedures”l

on page 38|

‘Receiving Stored Procedure Result Sets in SQL-bodied Routines” on page|

0]

‘Receiving Stored Procedure Result Sets in JDBC Applications and|

Routines” on page 45|

‘Returning Result Sets From JDBC Stored Procedures” on page 41|

‘Receiving Stored Procedure Result Sets in SQLj Applications and|

Routines” on page 44|

‘Returning Result Sets From SQLj Stored Procedures” on page 40|

Related reference:

“COMMIT statement” in the SQL Reference, Volume 2

“CREATE PROCEDURE statement” in the SQL Reference, Volume 2
“DESCRIBE statement” in the SQL Reference, Volume 2

“PREPARE statement” in the SQL Reference, Volume 2
“ROLLBACK statement” in the SQL Reference, Volume 2
“SYSCAT.ROUTINES catalog view” in the SQL Reference, Volume 1

Returning Result Sets From SQL and Embedded SQL Stored Procedures

You can develop stored procedures that return result sets to the invoking
routine or application. In SQL and embedded SQL stored procedures, the
returning of result sets is handled with the DECLARE CURSOR statement.

Procedure:

To return a result set from an SQL or embedded SQL stored procedure:
1. Declare a cursor using the DECLARE CURSOR statement. The cursor

declaration includes the SELECT statement that generates the set of rows
that will compose the result set. In the cursor declaration it is strongly
recommended that you specify the result set destination with the WITH
RETURN TO clause (this is mandatory for SQL procedures).

* To return a result set to the invoker of a stored procedure, whether the
invoker is a client application or another routine, use the WITH
RETURN TO CALLER clause.

Programming Server Applications

In the following example, the SQL procedure “CALLER_SET” uses the
WITH RETURN TO CALLER clause to return a result set to the invoker
of CALLER_SET:
CREATE PROCEDURE CALLER_SET()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE clientcur CURSOR WITH RETURN TO CALLER
FOR SELECT name, dept, job
FROM staff
WHERE salary > 15000;
OPEN clientcur;
END
* To return a result set from a stored procedure to the originating
application, use the WITH RETURN TO CLIENT clause. When WITH
RETURN TO CLIENT is specified on a result set, no nested stored
procedures can access the result set.

In the following example, the SQL procedure “CLIENT_SET” uses the
WITH RETURN TO CLIENT clause in the DECLARE CURSOR
statement to return a result set to the client application, even if
“CLIENT_SET” is invoked as a nested routine:
CREATE PROCEDURE CLIENT_SET()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE clientcur CURSOR WITH RETURN TO CLIENT
FOR SELECT name, dept, job
FROM staff
WHERE salary > 20000;
OPEN clientcur;
END
2. Open the cursor using the OPEN statement. After the cursor is opened in
the stored procedure, you can FETCH rows from it. However, the result
set that is returned to the application or calling routine will only contain
unfetched rows.

3. Exit from the stored procedure without closing the cursor.

If you have not done so already, develop a client application or caller routine
that will accept result sets from your stored procedure.

Related concepts:

* ["Condition Handlers in SQL Procedures” on page 63|

* ["'SOLCODE and SQLSTATE Variables in SQL Procedures” on page 68|
* ['Stored Procedure Result Sets” on page 36

Related tasks:

Chapter 2. Developing Routines 39

40

* “Creating SQL Procedures” in the Application Development Guide: Building
and Running Applications

* “Calling Stored Procedures with the CALL Statement” in the Application
Development Guide: Building and Running Applications

» “Calling SQL Procedures with Client Applications on UNIX” in the
Application Development Guide: Building and Running Applications

* “Calling SQL Procedures with Client Applications on Windows” in the
Application Development Guide: Building and Running Applications

+ [“Receiving Stored Procedure Result Sets in SQL-bodied Routines” on page
42|
* ["Receiving Stored Procedure Result Sets in JDBC Applications and|
Routines” on page 45|

* ["Receiving Stored Procedure Result Sets in SQLj Applications and|
Routines” on page 44|

Related reference:

* “SQL Procedure Samples” in the Application Development Guide: Building and
Running Applications

Related samples:
* “spserver.sqc -- A variety of types of stored procedures (C)”
* “spserver.sqC - A variety of types of stored procedures (C++)”

Returning Result Sets From SQLj Stored Procedures

You can develop SQLj stored procedures that return result sets to the invoking
routine or application. In SQLj stored procedures, the returning of result sets
is handled with ResultSet objects.

Procedure:

To return a result set from an SQLj stored procedure:
1. Declare an iterator class to handle query data. For example:
#sql iterator SpServerEmployees(String, String, double);

2. For each result set that is to be returned, include a parameter of type
ResultSet[] in the stored procedure declaration. For example the following
function signature accepts an array of ResultSet objects:

public static void getHighSalaries(

double inSalaryThreshold, // double input
int[] errorCode, // SQLCODE output
ResultSet[] rs) // ResultSet output

3. Instantiate an iterator object. For example:
SpServerEmployees cl;

Programming Server Applications

4. Assign the SQL statement that will generate the result set to an iterator. In
the following example, a host variable (called inSalaryThreshold -- see the
function signature example above) is used in the query’s WHERE clause:

#sql cl = {SELECT name, job, CAST(salary AS DOUBLE)
FROM staff
WHERE salary > :inSalaryThreshold
ORDER BY salary};

5. Execute the statement and get the result set:
rs[0] = cl.getResultSet();

If you have not done so already, develop a client application or caller routine
that will accept result sets from your stored procedure.

Related concepts:

» ['Stored Procedure Result Sets” on page 36|

Related tasks:

« ['Receiving Stored Procedure Result Sets in SQL-bodied Routines” on pagel
2

* [“Receiving Stored Procedure Result Sets in JDBC Applications and)
Routines” on page 45|

* [‘“Receiving Stored Procedure Result Sets in SQLj Applications and|
Routines” on page 44|

Related samples:

* “SpServer.sqlj -- Provide a variety of types of stored procedures to be called
from (SQLj)”

Returning Result Sets From JDBC Stored Procedures

You can develop JDBC stored procedures that return result sets to the
invoking routine or application. In JDBC stored procedures, the returning of
result sets is handled with ResultSet objects.

Procedure:

To return a result set from a JDBC stored procedure:

1. For each result set that is to be returned, include a parameter of type
ResultSet[] in the stored procedure declaration. For example, the following
function signature accepts an array of ResultSet objects:

public static void getHighSalaries(

double inSalaryThreshold, // double input
int[] errorCode, // SQLCODE output
ResultSet[] rs) // ResultSet output

2. Open the invoker’s database connection (using a Connection object):

Chapter 2. Developing Routines 41

42

Connection con =
DriverManager.getConnection("jdbc:default:connection");

3. Prepare the SQL statement that will generate the result set (using a
PreparedStatement object). In the following example, the prepare is
followed by the assignment of an input variable (called inSalaryThreshold
-- see the function signature example above) to the value of the parameter
marker (a parameter marker is indicated with a "?”) in the previous
statement.

String query =
"SELECT name, job, CAST(salary AS DOUBLE) FROM staff " +

" WHERE salary > ? " +
" ORDER BY salary";

PreparedStatement stmt = con.prepareStatement(query);
stmt.setDouble(1, inSalaryThreshold);

4. Execute the statement:
rs[0] = stmt.executeQuery();

5. End the stored procedure body.

If you have not done so already, develop a client application or caller routine
that will accept result sets from your stored procedure.

Related concepts:

* [“Stored Procedure Result Sets” on page 36|

Related tasks:

+ ['Receiving Stored Procedure Result Sets in SQL-bodied Routines” on page|
42

+ ["Receiving Stored Procedure Result Sets in JDBC Applications and)|
Routines” on page 45

* ['Receiving Stored Procedure Result Sets in SQLj Applications and|
Routines” on page 44|

Related samples:

* “SpServerjava -- Provide a variety of types of stored procedures to be
called from (JDBC)”

Receiving Stored Procedure Result Sets in SQL-bodied Routines

You can receive result sets from stored procedures you invoke from within an
SQL-bodied routine.

Prerequisites:

Programming Server Applications

You must know how many result sets the invoked stored procedure will

return. For each result set that the invoking routine receives, a result set must

be declared.

Procedure:

To accept stored procedure result sets from within an SQL-bodied routine:

1. DECLARE result set locators for each result set that the stored procedure

will return. For example:

DECLARE resultl RESULT_SET_LOCATOR VARYING;
DECLARE result2 RESULT_SET_LOCATOR VARYING;
DECLARE result3 RESULT_SET_LOCATOR VARYING;

2. Invoke the stored procedure. For example:
CALL targetProcedure();

3. ASSOCIATE the result set locator variables (defined above) with the
invoked stored procedure. For example:

ASSOCIATE RESULT SET LOCATORS(resultl, result2, result3)
WITH PROCEDURE targetProcedure;

4. ALLOCATE the result set cursors passed from the invoked stored
procedure to the result set locators. For example:

ALLOCATE rsCur CURSOR FOR RESULT SET resultl;
5. FETCH rows from the result sets. For example:
FETCH rsCur INTO ...

Related concepts:

* [‘Stored Procedure Result Sets” on page 36|

Related tasks:

* [‘Returning Result Sets From SQL and Embedded SQL Stored Procedures”|

on page 38|

* ['Returning Result Sets From JDBC Stored Procedures” on page 41|

* [‘Returning Result Sets From SQLj Stored Procedures” on page 40|

Related reference:

¢ “CALL statement” in the SQL Reference, Volume 2

* “DECLARE CURSOR statement” in the SQL Reference, Volume 2

* “FETCH statement” in the SQL Reference, Volume 2

* “ALLOCATE CURSOR statement” in the SQL Reference, Volume 2

* “ASSOCIATE LOCATORS statement” in the SQL Reference, Volume 2

Chapter 2. Developing Routines

43

Receiving Stored Procedure Result Sets in SQLj Applications and
Routines

You can receive result sets from stored procedures you invoke from an SQLj
routine or application.

Procedure:

To accept stored procedure result sets from within an SQLj routine or
application:
1. Open a database connection (using a Connection object):

Connection con =
DriverManager.getConnection("jdbc:db2:sample", userid, passwd);

2. Set the default context (using a DefaultContext object):

DefaultContext ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

3. Set the execution context (using an ExecutionContext object):
ExecutionContext execCtx = ctx.getExecutionContext();

4. Invoke a stored procedure that returns result sets. In the following
example, a stored procedure named GET_HIGH_SALARIES is invoked,
and is passed an input variable (called inSalaryThreshold):

#sql {CALL GET HIGH SALARIES(:in inSalaryThreshold, :out outErrorCode)};

5. Declare a ResultSet object, and use the ExecutionContext object’s
getNextResultSet() method to accept result sets from the stored procedure.
For multiple result sets, put the getNextResultSet() call in a loop structure.
Each result set returned by the stored procedure will spawn a loop
iteration. Inside the loop, you can fetch the result set rows method, and
then close the result set object (with the ResultSet object’s close() method).
For example:

ResultSet rs = null;

while ((rs = execCtx.getNextResultSet()) != null)
{
ResultSetMetaData stmtInfo = rs.getMetaData();
int numOfColumns = stmtInfo.getColumnCount();
int r = 0;

// Result set rows are fetched and printed to screen.
while (rs.next())

{
r++;
System.out.print("Row: " + r + ": ");
for (int i=1; i <= numOfColumns; i++)
{
System.out.print(rs.getString(i));
if (i !'= numOfColumns)

{
System.out.print(", ");

44 Programming Server Applications

}

}
System.out.printin();

}

rs.close();

}

Related concepts:

» [“Stored Procedure Result Sets” on page 36|

Related tasks:

* ["'Returning Result Sets From SQL and Embedded SQL Stored Procedures”|
on page 38|

* ['Returning Result Sets From JDBC Stored Procedures” on page 41|

* ['Returning Result Sets From SQLj Stored Procedures” on page 40|

Related samples:

* “SpClient.sqlj -- Call a variety of types of stored procedures from
SpServer.sqlj (SQLj)”

Receiving Stored Procedure Result Sets in JDBC Applications and
Routines

You can receive result sets from stored procedures you invoke from a JDBC
routine or application.

Procedure:

To accept stored procedure result sets from within a JDBC routine or
application:

1. Open a database connection (using a Connection object):

Connection con =
DriverManager.getConnection("jdbc:db2:sample", userid, passwd);

2. Prepare the CALL statement that will invoke a stored procedure that
returns result sets (using a CallableStatement object). In the following
example, a stored procedure named GET_HIGH_SALARIES is invoked.
The prepare is followed by the assignment of an input variable (called
inSalaryThreshold -- a numeric value to be passed to the stored procedure)
to the value of the parameter marker in the previous statement. (A
parameter marker is indicated with a "?".)

String query = "CALL GET_HIGH SALARIES(?)";

CallableStatement stmt = con.prepareCall(query);
stmt.setDouble(1, inSalaryThreshold);

3. Call the stored procedure:

Chapter 2. Developing Routines 45

stmt.execute();
4. Use the CallableStatement object’s getResultSet() method to accept the first
result set from the stored procedure and fetch the rows from the result sets
using the fetchAll() method:

ResultSet rs = stmt.getResultSet();
// Result set rows are fetched and printed to screen.

while (rs.next())

{

r++;
System.out.print("Row: " + r + ": ");
for (int i=1; i <= numOfColumns; i++)
{

System.out.print(rs.getString(i));

if (i != numOfColumns)

{

System.out.print(", ");

}

1

System.out.printin();
}

5. For multiple result sets, use the CallableStatement object’s
getNextResultSet() method to enable the following result set to be read.
Then repeat the process in the previous step, where the ResultSet object
accepts the current result set, and fetches the result set rows. For example:

while (callStmt.getMoreResults())

{
rs = callStmt.getResultSet()

ResultSetMetaData stmtInfo = rs.getMetaData();
int numOfColumns = stmtInfo.getColumnCount();
int r = 0;

// Result set rows are fetched and printed to screen.
while (rs.next())

{
r++;
System.out.print("Row: " + r + ": ");
for (int i=1; i <= numOfColumns; i++)
{
System.out.print(rs.getString(i));
if (i != numOfColumns)
{
System.out.print(", ");
}
}
System.out.printin();
1

}
6. Close the ResultSet object with its close() method:
rs.close();

46 Programming Server Applications

Related concepts:

* ['Stored Procedure Result Sets” on page 36|

Related tasks:

* ['Returning Result Sets From SQL and Embedded SQL Stored Procedures”|
on page 38|

¢ ['Returning Result Sets From JDBC Stored Procedures” on page 41|

* ['Returning Result Sets From SQLj Stored Procedures” on page 40|

Related samples:

* “SpClient.java -- Call a variety of types of stored procedures from
SpServerjava (JDBC)”

Parameter Handling in PROGRAM TYPE MAIN or PROGRAM TYPE SUB
Stored Procedures

Stored procedures can accept parameters in the style of main routines or
subroutines. This is determined when you register your stored procedure with
the CREATE PROCEDURE statement.

C or C++ stored procedures of PROGRAM TYPE SUB accept arguments in the
same manner as C or C++ subroutines. Pass parameters as pointers. For
example, the following C stored procedure signature accepts parameters of
type INTEGER, SMALLINT, and CHAR(3):

int storproc (sqlint32 xargl, sqlintl6 *arg2, char xarg3)

Java' " stored procedures can only accept arguments as subroutines. Pass IN
parameters as simple arguments. Pass OUT and INOUT parameters as arrays
with a single element. The following parameter-style Java stored procedure
signature accepts an IN parameter of type INTEGER, an OUT parameter of
type SMALLINT, and an INOUT parameter of type CHAR(3):

int storproc (int argl, short arg2[], String arg[])

To write a C stored procedure that accepts arguments like a main function in
a C program, specify PROGRAM TYPE MAIN in the CREATE PROCEDURE
statement. You must write stored procedures of PROGRAM TYPE MAIN to
conform to the following specifications:

* The stored procedure accepts parameters through two arguments:
— a parameter counter variable; for example, argc
— an array of pointers to the parameters; for example, char **argv
* The stored procedure must be built as a shared library

In PROGRAM TYPE MAIN stored procedures, DB2® sets the value of the first
element in the arqu array, (argu[0]), to the name of the stored procedure. The

Chapter 2. Developing Routines 47

48

remaining elements of the argv array correspond to the parameters as defined
by the PARAMETER STYLE of the stored procedure. For example, the
following embedded C stored procedure passes in one IN parameter as argo[1]
and returns two OUT parameters as argo[2] and argv[3].

The CREATE PROCEDURE statement for the PROGRAM TYPE MAIN
example is as follows:

CREATE PROCEDURE MAIN_EXAMPLE (IN job CHAR(8),
OUT salary DOUBLE, OUT errorcode INTEGER)
DYNAMIC RESULT SETS ©
LANGUAGE C
PARAMETER STYLE GENERAL
NO DBINFO
FENCED
READS SQL DATA
PROGRAM TYPE MAIN
EXTERNAL NAME 'spserver!mainexample'

The following code for the stored procedure copies the value of argu[1] into

the CHAR(8) host variable injob, then copies the value of the DOUBLE host

variable outsalary into argu[2] and returns the SQLCODE as argou/[3]:
SQL_API_RC SQL_API FN main_example (int argc, char **argv)

{
EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
char injob[9];
double outsalary;
EXEC SQL END DECLARE SECTION;
/* argv[0] contains the stored procedure name. */
/* Parameters start at argv[1] */
strcpy (injob, (char x)argv[1]);
EXEC SQL SELECT AVG(salary)
INTO :outsalary
FROM employee
WHERE job = :injob;
memcpy ((double *)argv[2], (double *)&outsalary, sizeof(double));
memcpy ((sqlint32 *)argv[3], (sqlint32 *)&SQLCODE, sizeof(sqlint32));
return (0);

} /* end main_example function */

Related concepts:

* ['Routines: Stored Procedures” on page 7|

Related reference:

Programming Server Applications

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

Related samples:

* “spcreate.db2 - How to catalog the stored procedures contained in
spserver.sqc ”

* “spserver.sqc -- A variety of types of stored procedures (C)”

UDF and Method Features

Unlike stored procedures, UDFs and methods are invoked from within SQL
statements. Where a stored procedure is invoked once when it is CALLed, a
function or a method can be invoked multiple times from a single reference in
an SQL statement. This difference in implementation requires special features.
The following sections describe scratchpads, which can be used to preserve
state information between invocations, and the processing model for UDFs
and methods registered with the FINAL CALL option.

Scratchpads for UDFs and Methods

A scratchpad enables a user-defined function or method to save its state from
one invocation to the next. For example, here are two situations where saving
state between invocations is beneficial:

1. Functions or methods that, to be correct, depend on saving state.

An example of such a function or method is a simple counter function that
returns a '1' the first time it is called, and increments the result by one
each successive call. Such a function could, in some circumstances, be used
to number the rows of a SELECT result:

SELECT counter(), a, b+c, ...

FROM tablex
WHERE ...

The function needs a place to store the current value for the counter
between invocations, where the value will be guaranteed to be the same
for the following invocation. On each invocation, the value can then be
incremented and returned as the result of the function.

This type of routine is NOT DETERMINISTIC. Its output does not depend
solely on the values of its SQL arguments.

2. Functions or methods where the performance can be improved by the
ability to perform some initialization actions.
An example of such a function or method, which may be a part of a
document application, is a match function, which returns 'Y' if a given
document contains a given string, and 'N' otherwise:

Chapter 2. Developing Routines 49

50

SELECT docid, doctitle, docauthor
FROM docs
WHERE match('myocardial infarction', docid) = 'Y'

This statement returns all the documents containing the particular text
string value represented by the first argument. What match would like to
do is:

* First time only.

Retrieve a list of all the document IDs that contain the string
‘myocardial infarction” from the document application, that is
maintained outside of DB2. This retrieval is a costly process, so the
function would like to do it only one time, and save the list somewhere
handy for subsequent calls.

* On each call.

Use the list of document IDs saved during the first call to see if the
document ID that is passed as the second argument is contained in the
list.

This type of routine is DETERMINISTIC. Its answer only depends on its
input argument values. What is shown here is a function whose
performance, not correctness, depends on the ability to save information
from one call to the next.

Both of these needs are met by the ability to specify a SCRATCHPAD in the
CREATE statement:

CREATE FUNCTION counter()
RETURNS int ... SCRATCHPAD;

CREATE FUNCTION match(varchar(200), char(15))
RETURNS char(1) ... SCRATCHPAD 10000;

The SCRATCHPAD keyword tells DB2® to allocate and maintain a scratchpad
for a routine. The default size for a scratchpad is 100 bytes, but you can
determine the size (in bytes) for a scratchpad. The match example is 10000
bytes long. DB2 initializes the scratchpad to binary zeros before the first
invocation. If the scratchpad is being defined for a table function, and if the
table function is also defined with NO FINAL CALL (the default), DB2
refreshes the scratchpad before each OPEN call. If you specify the table
function option FINAL CALL, DB2 does not examine or change the content of
the scratchpad after its initialization. For scalar functions defined with
scratchpads, DB2 also does not examine or change the scratchpad’s content
after its initialization. A pointer to the scratchpad is passed to the routine on
each invocation, and DB2 preserves the routine’s state information in the
scratchpad.

Programming Server Applications

So for the counter example, the last value returned could be kept in the
scratchpad. And the match example could keep the list of documents in the
scratchpad if the scratchpad is big enough, otherwise it could allocate
memory for the list and keep the address of the acquired memory in the
scratchpad. Scratchpads can be variable length: the length is defined in the
CREATE statement for the routine.

The scratchpad only applies to the individual reference to the routine in the
statement. If there are multiple references to a routine in a statement, each
reference has its own scratchpad, thus scratchpads cannot be used to
communicate between references. The scratchpad only applies to a single DB2
agent (an agent is a DB2 entity that performs processing of all aspects of a
statement). There is no "global scratchpad” to coordinate the sharing of
scratchpad information between the agents. This is especially important for
situations where DB2 establishes multiple agents to process a statement (in
either a single partition or multiple partition database). In these cases, even
though there may only be a single reference to a routine in a statement, there
could be multiple agents doing the work, and each would have its own
scratchpad. In a multiple partition database, where a statement referencing a
UDF is processing data on multiple partitions, and invoking the UDF on each
partition, the scratchpad would only apply to a single partition. As a result,
there is a scratchpad on each partition where the UDF is executed.

If the correct execution of a function depends on there being a single
scratchpad per reference to the function, then register the function as
DISALLOW PARALLEL. This will force the function to run on a single
partition, thereby guaranteeing that only a single scratchpad will exist per
reference to the function.

Because it is recognized that a UDF or method may want to acquire system
resources, the UDF or method can be defined with the FINAL CALL keyword.
This keyword tells DB2 to call the UDF or method at end-of-statement
processing so that the UDF or method can release its system resources. It is
vital that a routine free any resources it acquires; even a small leak can
become a big leak in an environment where the statement is repetitively
invoked, and a big leak can cause a DB2 crash.

Since the scratchpad is of fixed size, the UDF or method may want to allocate
memory for itself and thus uses the final call to free the memory. For example,
the preceding match function cannot predict how many documents will match
the given text string. So a better definition for match is:

CREATE FUNCTION match(varchar(200), char(15))
RETURNS char(1) ... SCRATCHPAD 10000 FINAL CALL;

For UDFs or methods that use a scratchpad and are referenced in a subquery,
DB2 may decide to make a final call (if the UDF or method is so specified)

Chapter 2. Developing Routines 51

52

and refresh the scratchpad between invocations of the subquery. You can
protect yourself against this possibility, if your UDFs or methods are ever
used in subqueries, by defining the UDF or method with FINAL CALL and
using the call-type argument, or by always checking for the binary zero state of
the scratchpad.

If you do specify FINAL CALL, please note that your UDF or method receives
a call of type FIRST. This could be used to acquire and initialize some
persistent resource.

Related concepts:
* ['Scratchpads on 32-bit and 64-bit Platforms” on page 52|
* ['Method and Scalar Function Processing Model” on page 53|

Related reference:

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

Scratchpads on 32-bit and 64-bit Platforms

To make your UDF or method code portable between 32-bit and 64-bit
platforms, you must take care in the way you create and use scratchpads that
contain 64-bit values. It is recommended that you do not declare an explicit
length variable for a scratchpad structure that contains one or more 64-bit
values, such as 64-bit pointers or sqlint64 BIGINT variables.

A scratchpad is passed in the form of a LOB, which has the structure:
struct Tob

sqlint32 length;
char data[100];
}

When defining its own structure for the scratchpad, a routine has two choices:

1. Redefine the entire scratchpad LOB, in which case it needs to include an
explicit length field. For example:

struct spadlob

{
sq1int32 lob_length;
sqlint32 int_var;
sqlint64 bigint_var;

void SQL_API FN routine(..., struct spadlob* scratchpad, ...)

{
/* Use scratchpad */

}

Programming Server Applications

2. Redefine just the data portion of the scratchpad LOB, in which case no
length field is needed.
struct spaddata

{
sqlint32 int_var;
sqlint64 bigint_var;

}s

void SQL_API_FN routine(..., struct Tobx lob_spad, ...)

{
struct spaddata* scratchpad = (struct spaddata*)lob_spad-—>data;
/* Use scratchpad */

}

Since the application cannot change the value in the length field of the
scratchpad LOB, there is no significant benefit to coding the routine as shown
in the first example. The second example is also portable between computers
with different word sizes, so it is the preferred way of writing the routine.

Related concepts:
* [“Scratchpads for UDFs and Methods” on page 49|

Method and Scalar Function Processing Model

The processing model for methods and scalar UDFs that are defined with the
FINAL CALL specification is as follows:

FIRST call
This is a special case of the NORMAL call, identified as FIRST to
enable the function to perform any initial processing. Arguments are
evaluated and passed to the function. Normally, the function will
return a value on this call, but it can return an error, in which case no
NORMAL or FINAL call is made. If an error is returned on a FIRST
call, the method or UDF must clean up before returning, because no
FINAL call will be made.

NORMAL call
These are the second through second-last calls to the function, as
dictated by the data and the logic of the statement. The function is
expected to return a value with each NORMAL call after arguments
are evaluated and passed. If NORMAL call returns an error, no
further NORMAL calls are made, but the FINAL call is made.

FINAL call
This is a special call, made at end-of-statement processing (or CLOSE
of a cursor), provided that the FIRST call succeeded. No argument
values are passed on a FINAL call. This call is made so that the
function can clean up any resources. The function does not return a
value on this call, but may return an error.

Chapter 2. Developing Routines 53

For methods or scalar UDFs not defined with FINAL CALL, only NORMAL
calls are made to the function, which normally returns a value for each call. If
a NORMAL call returns an error, or if the statement encounters another error,
no more calls are made to the function.

Note: This model describes the ordinary error processing for methods and
scalar UDFs. In the event of a system failure or communication
problem, a call indicated by the error processing model may not be
made. For example, for a FENCED UDFE, if the db2udf fenced process is
somehow prematurely terminated, DB2 cannot make the indicated calls.

Related concepts:

* ["Routines: Scalar User-Defined Functions” on page 8|

+ ["Routines: Methods” on page 10|

User-Defined Table Functions

54

In addition to returning scalar values, UDFs can also be developed to return
tables. The following sections describe user-defined table functions and the
processing model for table UDFs registered with the FINAL CALL option.

User-Defined Table Functions

A user-defined table function delivers a table to the SQL in which it is
referenced. A table UDF reference is only valid in a FROM clause of a SELECT
statement. When using table functions, observe the following:

* Even though a table function delivers a table, the physical interface between
DB2® and the UDF is one-row-at-a-time. There are five types of calls made
to a table function: OPEN, FETCH, CLOSE, FIRST, and FINAL. The
existence of FIRST and FINAL calls depends on how you define the UDF.
The same call-type mechanism that can be used for scalar functions is used
to distinguish these calls.

* Not every result column defined in the RETURNS clause of the CREATE
FUNCTION statement for the table function has to be returned. The
DBINFO keyword of CREATE FUNCTION, and corresponding dbinfo
argument enable the optimization that only those columns needed for a
particular table function reference need be returned.

* The individual column values returned conform in format to the values
returned by scalar functions.

* The CREATE FUNCTION statement for a table function has a
CARDINALITY specification. This specification enables the definer to
inform the DB2 optimizer of the approximate size of the result so that the
optimizer can make better decisions when the function is referenced.
Regardless of what has been specified as the CARDINALITY of a table
function, exercise caution against writing a function with infinite cardinality,

Programming Server Applications

that is, a function that always returns a row on a FETCH call. There are
many situations where DB2 expects the end-of-table condition, as a catalyst
within its query processing. Using GROUP BY or ORDER BY are examples
where this is the case. DB2 cannot form the groups for aggregation until
end-of-table is reached, and it cannot sort until it has all the data. So a table
function that never returns the end-of-table condition (SQL-state value
’02000") can cause an infinite processing loop if you use it with a GROUP
BY or ORDER BY clause.

Related reference:
¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* [‘Syntax for Passing Arguments to Routines Written in C/C++, OLE, 01{
COBOL” on page 74|

Table Function Processing Model

The processing model for table UDFs that are defined with the FINAL CALL
specification is as follows:

FIRST call
This call is made before the first OPEN call, and its purpose is to
enable the function to perform any initial processing. The scratchpad
is cleared prior to this call. Arguments are evaluated and passed to
the function. The function does not return a row. If the function
returns an error, no further calls are made to the function.

OPEN call
This call is made to enable the function to perform special OPEN
processing specific to the scan. The scratchpad (if present) is not
cleared prior to the call. Arguments are evaluated and passed. The
function does not return a row on an OPEN call. If the function
returns an error from the OPEN call, no FETCH or CLOSE call is
made, but the FINAL call will still be made at end of statement.

FETCH call
FETCH calls continue to be made until the function returns the
SQLSTATE value signifying end-of-table. It is on these calls that the
UDF develops and returns a row of data. Argument values may be
passed to the function, but they are pointing to the same values that
were passed on OPEN. Therefore, the argument values may not be
current and should not be relied upon. If you do need to maintain
current values between the invocations of a table function, use a
scratchpad. The function can return an error on a FETCH call, and the
CLOSE call will still be made.

CLOSE call
This call is made at the conclusion of the scan or statement, provided

Chapter 2. Developing Routines 55

56

that the OPEN call succeeded. Any argument values will not be
current. The function can return an error.

FINAL call
The FINAL call is made at the end of the statement, provided that the
FIRST call succeeded. This call is made so that the function can clean
up any resources. The function does not return a value on this call,
but may return an error.

For table UDFs not defined with FINAL CALL, only OPEN, FETCH, and
CLOSE calls are made to the function, which normally returns a value for
each call. Before each OPEN call, the scratchpad (if present) is cleared.

The difference between table UDFs that are defined with FINAL CALL and
those defined with NO FINAL CALL can be seen when examining a scenario
involving a join or a subquery, where the table function access is the "inner”
access. For example, in a statement such as:

SELECT x,y,z,... FROM table_1 as A,

TABLE(table_func_1(A.coll,...)) as B
WHERE. ..

In this case, the optimizer would open a scan of table_func_1 for each row of
table_1. This is because the value of table_1’s coll, which is passed to
table_func_1, is used to define the table function scan.

For NO FINAL CALL table UDFs, the OPEN, FETCH, FETCH|, ..., CLOSE
sequence of calls repeats for each row of table_1. Note that each OPEN call
will get a clean scratchpad. Because the table function does not know at the
end of each scan whether there will be more scans, it must clean up
completely during CLOSE processing. This could be inefficient if there is
significant one-time open processing that must be repeated.

FINAL CALL table UDFs, provide a one-time FIRST call, and a one-time
FINAL call. These calls are used to amortize the expense of the initialization
and termination costs across all the scans of the table function. As before, the
OPEN, FETCH, FETCH, ..., CLOSE calls are made for each row of the outer
table, but because the table function knows it will get a FINAL call, it does
not need to clean everything up on its CLOSE call (and reallocate on
subsequent OPEN). Also note that the scratchpad is not cleared between
scans, largely because the table function resources will span scans.

At the expense of managing two additional call types, the table UDF may be
able to achieve greater efficiency in these join and subquery scenarios.
Deciding whether to define the table function as FINAL CALL depends on
how it is expected to be used.

Related concepts:

Programming Server Applications

* [‘Table Function Execution Model for Java” on page 57

* ['Routines: Table User-Defined Functions” on page 9|

Related reference:
* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2
* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (External Table) statement” in the SQL Reference,

Volume 2

Table Function Execution Model for Java

For table functions written in Java"" and using PARAMETER STYLE
DB2GENERAL, it is important to understand what happens at each point in
DB2’s processing of a given statement. The following table details this
information for a typical table function. Covered are both the NO FINAL
CALL and the FINAL CALL cases, assuming SCRATCHPAD in both cases.

Point in scan time NO FINAL CALL FINAL CALL
LANGUAGE JAVA LANGUAGE JAVA
SCRATCHPAD SCRATCHPAD
Before the first OPEN for the No calls.

table function

¢ (lass constructor is called
(means new scratchpad). UDF
method is called with FIRST
call.

¢ Constructor initializes class
and scratchpad variables.
Method connects to Web
server.

At each OPEN of the table
function

* (Class constructor is called
(means new scratchpad). UDF
method is called with OPEN
call.

* Constructor initializes class
and scratchpad variables.
Method connect to Web server,
and opens the scan for Web
data.

* UDF method is opened with
OPEN call.

* Method opens the scan for
whatever Web data it wants.
(Might be able to avoid reopen
after a CLOSE reposition,
depending on what is saved in
the scratchpad.)

At each FETCH for a new row of
table function data

e UDF method is called with
FETCH call.

* Method fetches and returns
next row of data, or EOT.

¢ UDF method is called with
FETCH call.

¢ Method fetches and returns
new row of data, or EOT.

Chapter 2. Developing Routines 57

Point in scan time

NO FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

At each CLOSE of the table
function

* UDF method is called with

CLOSE call. close() method if

it exists for class.

* Method closes its Web scan
and disconnects from the Web
server. close() does not need
to do anything.

UDF method is called with
CLOSE call.

Method might reposition to
the top of the scan, or close
the scan. It can save any state
in the scratchpad, which will
persist.

After the last CLOSE of the table | No calls. « UDF method is called with
function FINAL call. close() method is
called if it exists for class.
* Method disconnects from the
Web server. close() method
does not need to do anything.

Notes:

1. By "UDF method” we mean the Java class method that implements the
UDEF. This is the method identified in the EXTERNAL NAME clause of the
CREATE FUNCTION statement.

2. For table functions with NO SCRATCHPAD specified, the calls to the UDF
method are as indicated in this table, but because the user is not asking for
any continuity with a scratchpad, DB2® will cause a new object to be
instantiated before each call, by calling the class constructor. It is not clear
that table functions with NO SCRATCHPAD (and thus no continuity) can
do useful things, but they are supported.

Related concepts:

+ I'DB2GENERAL Routines” on page 303|

* ['Java Routines” on page 118|

+ ["Table Function Processing Model” on page 55

Related reference:

* “CREATE FUNCTION (External Table) statement” in the SQL Reference,

Volume 2
58 Programming Server Applications

Chapter 3. SQL-Bodied Routines

CREATE Statements for SQL-Bodied Routines 59 Condition Handler Declarations 64
Dynamic SQL in SQL-Bodied Routines . . . 60 SIGNAL and RESIGNAL Statements in
Displaying Error Messages for SQL Condition Handlers 67
Procedures .. 62 SQLCODE and SQLSTATE Varlables in
Condition Handlers in SQL Procedures . .63 SQL Procedures.68

Condition Handlers in SQL Procedures . . 63

SQL-bodied routines are composed entirely of SQL statements. You specify
these statements in the CREATE statement that you use to register the routine.
You can also use the IBM DB2 Development Center to help you register the
routine with DB2, specify the source statements for the SQL-bodied routine,
and prepare the routine for execution.

CREATE Statements for SQL-Bodied Routines

To issue a CREATE statement as a DB2® Command Line Processor (DB2 CLP)
script, you must use an alternate terminating character for SQL statements in
the script. The semicolon (';') character, the default for DB2 CLP scripts,
terminates SQL statements within the SQL routine body.

To use an alternate terminating character in DB2 CLP scripts, select a
character that is not used in standard SQL statements. In the following
example, the at sign (‘@) is used as the terminating character for a DB2 CLP
script named script.db2:

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), IN rating SMALLINT)
LANGUAGE SQL
BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SIGNAL SQLSTATE '20000' SET MESSAGE_TEXT = 'Employee not found';

IF (rating = 1)
THEN UPDATE employee
SET salary = salary * 1.10, bonus
WHERE empno = employee_number;
ELSEIF (rating = 2)
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;
ELSE UPDATE employee
SET salary = salary * 1.03, bonus

1000

]
(<]

© Copyright IBM Corp. 1993 - 2002 59

WHERE empno = employee_number;
END IF;
END
@

To process the DB2 CLP script from the command line, use the following
syntax:

db2 -tdterm-char -vf script-name

where term-char represents the terminating character, and where script-name
represents the name of the DB2 CLP script to process. To process the
preceding script, for example, issue the following command from the system
command prompt:

db2 -td@ -vf script.db2

Related concepts:
* ["Routines (Stored Procedures, UDFs, Methods)” on page 3|

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* “CREATE PROCEDURE (SQL) statement” in the SQL Reference, Volume 2

Dynamic SQL in SQL-Bodied Routines

60

SQL routines, like external routines, can issue dynamic SQL statements. If
your dynamic SQL statement does not include parameter markers and you
plan to execute it only once, use the EXECUTE IMMEDIATE statement.

If your dynamic SQL statement contains parameter markers, you must use the
PREPARE and EXECUTE statements. If you plan to execute a dynamic SQL
statement multiple times, it might be more efficient to issue a single PREPARE
statement and to issue the EXECUTE statement multiple times rather than
issuing the EXECUTE IMMEDIATE statement each time.

To use the PREPARE and EXECUTE statements to issue dynamic SQL in your

SQL routine, you must include the following statements in the SQL routine

body:

1. Declare a variable of type VARCHAR that is large enough to hold your
dynamic SQL statement using a DECLARE statement.

Programming Server Applications

2. Assign a statement string to the variable using a SET statement. You
cannot include variables directly in the statement string. Instead, you must
use the question mark ('?') symbol as a parameter marker for any variables
used in the statement.

3. Create a prepared statement from the statement string using a PREPARE
statement.

4. Execute the prepared statement using an EXECUTE statement. If the
statement string includes input parameter markers, use the USING clause
to replace it with the value of a variable. If the statement includes output
parameter markers, use the INTO clause to specify the variables that will
receive the output.

Note: Statement names defined in PREPARE statements for SQL routines are
treated as scoped variables. Once the SQL routine exits the scope in
which you define the statement name, DB2® can no longer access the
statement name. Inside any compound statement, you cannot issue two
PREPARE statements that use the same statement name.

The following example shows an SQL procedure that includes dynamic SQL
statements:

The SQL procedure receives a department number (deptNumber) as an input
parameter. In the SQL procedure, three statement strings are built, prepared,
and executed. The first statement string executes a DROP statement to ensure
that the table to be created does not already exist. This table is named
DEPT_deptno_T, where deptno is the value of input parameter deptNumber. A
CONTINUE HANDLER ensures that the SQL procedure will continue if it
detects SQLSTATE 42704 (“undefined object name”), which DB2 returns from
the DROP statement if the table does not exist. The second statement string
issues a CREATE statement to create DEPT_deptno_T. The third statement
string inserts rows for employees in department deptno into DEPT_deptno_T.
The third statement string contains a parameter marker that represents
deptNumber. When the prepared statement is executed, parameter deptNumber
is substituted for the parameter marker.

CREATE PROCEDURE create_dept_table

(IN deptNumber VARCHAR(3), OUT table_name VARCHAR(30))

LANGUAGE SQL

BEGIN
DECLARE stmt VARCHAR(1000);

-- continue if sqlstate 42704 ('undefined object name')
DECLARE CONTINUE HANDLER FOR SQLSTATE '42704'

SET stmt = '';
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

SET table_name = 'PROCEDURE_FAILED';

SET table name = 'DEPT_'||deptNumber||' T';

Chapter 3. SQL-Bodied Routines 61

END

SET stmt = 'DROP TABLE '||table_name;

PREPARE s1 FROM stmt;

EXECUTE sl

SET stmt = 'CREATE TABLE '||table name]|
"(empno CHAR(6) NOT NULL, '||
"firstnme VARCHAR(12) NOT NULL, '||
'‘midinit CHAR(1) NOT NULL, '[]

"lastname VARCHAR(15) NOT NULL, '||
'salary DECIMAL(9,2))';

PREPARE s2 FROM STMT;

EXECUTE s2;

SET stmt = 'INSERT INTO '||table_name || ' ' ||
"SELECT empno, firstnme, midinit, lastname, salary '||
"FROM employee '||
'"WHERE workdept = ?';

PREPARE s3 FROM stmt;
EXECUTE s3 USING deptNumber;

Related concepts:

* “Dynamic SQL Support Statements” in the Application Development Guide:
Programming Client Applications

Related reference:
* “EXECUTE statement” in the SQL Reference, Volume 2
* “PREPARE statement” in the SQL Reference, Volume 2

Displaying Error Messages for SQL Procedures

62

When

you issue a CREATE PROCEDURE statement for an SQL procedure,

DB2 may accept the syntax of the SQL procedure body but fail to create the
SQL procedure at the precompile or compile stage. In these situations, DB2
normally creates a log file that contains the error messages.

To retrieve the error messages generated by DB2 and the C compiler for an
SQL procedure, display the message log file in the following directory on
your database server:

UNIX

instance/function/routine/sqlproc/db_name/schema_name/tmp

where instance represents the path of the DB2 instance, db_name
represents the database alias, and schema_name represents the schema
with which the CREATE PROCEDURE statement was issued.

Windows

instance\function\routine\sqlproc\db_name\schema_name\tmp

Programming Server Applications

where instance represents the path of the DB2 instance, db_name
represents the database alias, and schema_name represents the schema
with which the CREATE PROCEDURE statement was issued.

Note: If the SQL procedure schema name is not issued as part of the CREATE
PROCEDURE statement, DB2 uses the value of the CURRENT
SCHEMA special register. To display the value of the CURRENT
SCHEMA special register, issue the following statement at the CLP:

VALUES CURRENT SCHEMA

Related tasks:

* “Retaining Intermediate Files for SQL Procedures” in the Application
Development Guide: Building and Running Applications

* ['Debugging Routines” on page 31|

Related reference:
* “CURRENT SCHEMA special register” in the SQL Reference, Volume 1

Condition Handlers in SQL Procedures

The sections that follow describe condition handlers, and how they can be
used to enable SQL procedures to react to various database conditions.

Condition Handlers in SQL Procedures

Condition handlers determine the behavior of your SQL procedure when a
condition occurs. You can declare one or more condition handlers in your SQL
procedure for general conditions, named conditions, or specific SQLSTATE
values.

If a statement in your SQL procedure raises an SQLWARNING or NOT
FOUND condition, and you have declared a handler for the respective
condition, DB2® passes control to the corresponding handler. If you have not
declared a handler for such a condition, DB2 passes control to the next
statement in the SQL procedure body. If the SQLCODE and SQLSTATE
variables have been declared, they will contain the corresponding values for
the condition.

If a statement in your SQL procedure raises an SQLEXCEPTION condition,
and you declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 passes control to that handler. If the
SQLSTATE and SQLCODE variables have been declared, their values after the
successful execution of a handler will be ‘00000 and 0 respectively.

Chapter 3. SQL-Bodied Routines 63

If a statement in your SQL procedure raises an SQLEXCEPTION condition,
and you have not declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 terminates the SQL procedure and returns to
the caller.

Related concepts:

* ['SIGNAL and RESIGNAL Statements in Condition Handlers” on page 67]
* [‘Condition Handler Declarations” on page 64
+ ["SQLCODE and SQLSTATE Variables in SQL Procedures” on page 68

Related tasks:
* I'Displaying Error Messages for SQL Procedures” on page 62|

Condition Handler Declarations

In order to define the behavior of your SQL procedure when certain
conditions occur, you need to declare condition handlers. The general form of
a handler declaration is:

DECLARE handler-type HANDLER FOR condition
SQL-procedure-statement

When DB2® raises a condition that matches condition, DB2 passes control to
the condition handler. The condition handler performs the action indicated by
handler-type, and then executes SQL-procedure-statement.

Handler-types

CONTINUE
Specifies that after SQL-procedure-statement completes, execution
continues with the statement after the statement that caused the
error.

EXIT Specifies that after SQL-procedure-statement completes, execution
continues at the end of the compound statement that contains the
handler.

UNDO
Specifies that before SQL-procedure-statement executes, DB2 rolls
back any SQL operations that have occurred in the compound
statement that contains the handler. After SQL-procedure-statement
completes, execution continues at the end of the compound
statement that contains the handler.

Note: You can only declare UNDO handlers in ATOMIC
compound statements.

Conditions
DB2 provides three general conditions:

64 Programming Server Applications

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an
SQLSTATE beginning with the characters ‘02".

SQLEXCEPTION
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition
(SQLWARNOQO is “W’), or that results in a positive SQL return code
other than +100. The corresponding SQLSTATE value will begin
with the characters ‘01".

You can also use the DECLARE statement to define your own condition
for a specific SQLSTATE.

SQL-procedure-statement
You can use a single SQL procedure statement to define the behavior of
the condition handler. DB2 accepts a compound statement delimited by a
BEGIN...END block as a single SQL procedure statement. If you use a
compound statement to define the behavior of a condition handler, and
you want the handler to retain the value of either the SQLSTATE or
SQLCODE variables, you must assign the value of the variable to a local
variable or parameter in the first statement of the compound block. If the
first statement of a compound block does not assign the value of
SQLSTATE or SQLCODE to a local variable or parameter, SQLSTATE and
SQLCODE cannot retain the value that caused DB2 to invoke the
condition handler.

The following examples demonstrate simple condition handlers:

CONTINUE handler
This handler assigns the value of 1 to the local variable at_end when
DB2 raises a NOT FOUND condition. DB2 then passes control to the
statement following the one that raised the NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND SET at_end = 1;

EXIT handler
In this example, the scope of the exit handler is confined to the
compound statement labeled A. If the table JAVELIN does not exist,
the DROP statement raises the NO_TABLE condition. The exit handler
will be activated, OUT_BUFFER will be set to the string, ‘Table does
not exist’, and execution will continue with the INSERT statement at
C, without visiting any more statements in compound statement A. If
the DROP statement completes successfully, the handler will not be
activated and execution will continue with the SET statement at B.

Chapter 3. SQL-Bodied Routines 65

66

CREATE PROCEDURE EXIT_TEST ()
LANGUAGE SQL
BEGIN
DECLARE OUT_BUFFER VARCHAR(80)
DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';

A: BEGIN
DECLARE EXIT HANDLER FOR NO_TABLE
BEGIN
SET OUT_BUFFER='Table does not exist';
END;

-- Drop potentially nonexistent table:
DROP TABLE JAVELIN;

B: SET OUT_BUFFER='Table dropped successfully';
END;

-- Copy OUT_BUFFER to some message table:
C: INSERT INTO MESSAGES VALUES OUT_BUFFER;
END

UNDO handler
In this example, the scope of the undo handler is confined to the
compound statement labeled A. If table JAVELIN does not exist, the
DROP statement raises the NO_TABLE condition. The undo handler
will be activated, the INSERT preceding the DROP will be rolled back,
OUT_BUFFER will be set to the string ‘Table does not exist’, and
execution will continue with the INSERT statement at C, without
visiting any more statements in compound statement A. If the DROP
statement completes successfully, the handler will not be activated and
execution will continue with the SET statement at B.
CREATE PROCEDURE UNDO_TEST ()
LANGUAGE SQL
BEGIN

DECLARE OUT_BUFFER VARCHAR(80);
DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';

A: BEGIN ATOMIC
DECLARE UNDO HANDLER FOR NO_TABLE
BEGIN
SET OUT_BUFFER='Table does not exist';
END;

INSERT INTO MESSAGES VALUES
'This message will be removed by a rollback.';

-- Drop potentially nonexistent table:
DROP TABLE JAVELIN;

B: SET OUT_BUFFER='Table dropped successfully';
END;

Programming Server Applications

-- Copy OUT_BUFFER to some message table:
C: INSERT INTO MESSAGES VALUES OUT_BUFFER;
END

Note: You can only declare UNDO handlers in ATOMIC compound
statements.

Related concepts:

» ["Condition Handlers in SQL Procedures” on page 63|
* ['SIGNAL and RESIGNAL Statements in Condition Handlers” on page 67
* "SQLCODE and SQLSTATE Variables in SQL Procedures” on page 68|

Related reference:

¢ “Compound SQL (Embedded) statement” in the SQL Reference, Volume 2
* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “Compound SQL (Dynamic) statement” in the SQL Reference, Volume 2

SIGNAL and RESIGNAL Statements in Condition Handlers

You can use the SIGNAL and RESIGNAL statements to explicitly raise a
specific SQLSTATE. Use the SET MESSAGE_TEXT clause of the SIGNAL and
RESIGNAL statements to define the text that DB2® displays along with the
raised SQLSTATE.

In the following example, the SQL procedure body declares a condition
handler for the custom SQLSTATE 72822. When the SQL procedure executes
the SIGNAL statement that raises SQLSTATE 72822, DB2 invokes the
condition handler. The condition handler tests the value of the SQL variable
var with an IF statement. If var is 0K, the handler redefines the SQLSTATE
value as 72623 and assigns a string literal to the text associated with
SQLSTATE 72623. If var is not 0K , the handler redefines the SQLSTATE value
as 72319 and assigns the value of var to the text associated with that
SQLSTATE.

DECLARE EXIT HANDLER FOR SQLSTATE '72822'
BEGIN
IF (var = '0K')
RESIGNAL SQLSTATE '72623' SET MESSAGE_TEXT
ELSE
RESIGNAL SQLSTATE '72319' SET MESSAGE_TEXT
END;

'Got SQLSTATE 72822';

var;

SIGNAL SQLSTATE '72822';

Related concepts:

« ["Condition Handlers in SQL Procedures” on page 63|

Chapter 3. SQL-Bodied Routines 67

68

* ['Condition Handler Declarations” on page 64|
* ['SQLCODE and SQLSTATE Variables in SQL Procedures” on page 68|

Related reference:
» “SIGNAL statement” in the SQL Reference, Volume 2
* “RESIGNAL statement” in the SQL Reference, Volume 2

SQLCODE and SQLSTATE Variables in SQL Procedures

To help debug your SQL procedures, you might find it useful to insert the
value of the SQLCODE and SQLSTATE into a table at various points in the
SQL procedure, or to return the SQLCODE and SQLSTATE values in a
diagnostic string as an OUT parameter. To use the SQLCODE and SQLSTATE
values, you must declare the following SQL variables in the SQL procedure
body:

DECLARE SQLCODE INTEGER DEFAULT 03

DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

DB2® implicitly sets these variables whenever a statement is executed. If a
statement raises a condition for which a handler exists, the values of the
SQLSTATE and SQLCODE variables are available at the beginning of the
handler execution. However, the variables are reset as soon as the first
statement in the handler is executed. Therefore, it is common practice to copy
the values of SQLSTATE and SQLCODE into local variables in the first
statement of the handler. In the following example, a CONTINUE handler for
any condition is used to copy the SQLCODE variable into another variable
named retcode. The variable retcode can then be used in the executable
statements to control procedural logic, or pass the value back as an output
parameter.

BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE retcode INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND
SET retcode = SQLCODE;

executable-statements
END

Note: When you access the SQLCODE or SQLSTATE variables in an SQL
procedure, DB2 sets the value of SQLCODE to 0 and SQLSTATE to
‘00000 for the subsequent statement.

Related concepts:

* ["Condition Handlers in SQL Procedures” on page 63|
+ ['SIGNAL and RESIGNAL Statements in Condition Handlers” on page 67]

Programming Server Applications

* [‘Condition Handler Declarations” on page 64|

Chapter 3. SQL-Bodied Routines 69

70 Programming Server Applications

Chapter 4. External Routines

Parameter Styles for External Routines . . .71 Debugging Stored Procedures in Java 125
Syntax for Passing Arguments to Routines Preparing to Debug Java Stored
Written in C/C++, OLE, or COBOL74 Procedures 125
SQL in External Routines89 Populating the Debug Table Lo 127
Authorizations and Binding for External Invoking the Debug Program 128
Routines that Contain SQL92 Java Debug Table
Effects of DYNAMICRULES on Dynamlc SQL 95 DB2DBG.ROUTINE_DEBUG 128
C/C++ Routines97 OLE Automation Routineso 129
C/C++ Routines . . N OLE Automation Routine Des1gn .. . 130
Include File for C/C++ Routmes Creating and Registering OLE
(sqludfh) 102 Automation Routines 130
Supported SQL Data Types in C / C++ . . 103 Object Instance and Scratchpad
SQL Data Type Handhng in C/C++ Considerations and OLE Routines . . . 132
Routines 106 Supported SQL Data Types in OLE
Graphic Host Varlables in C/ C++ Automation. . . . 133
Routines . . . Y b 1 OLE Automation Routmes in BASIC and
C++ Type Decoratlon R 14 C++ 134
Java Routines118 OLE DB User- Defmed Table Functlons . . 138
Java Routines . . . 118 OLE DB User-Defined Table Functions 138
JAR File Adm1n1strat10n on the Database Creating an OLE DB Table UDF 139
Server. . . o122 Fully Qualified Rowset Names . . . 142
Supported SQL Data Types in]ava .. 0123 Supported SQL Data Types in OLE DB 143
Debugging Stored Procedures in Java . . 125

External routines can be written in the following programming languages: C,
C++, Java, and OLE. In addition to these languages, stored procedures can
also be written in COBOL.

In order to build an external routine, you need to install and configure the
supported compilers/developer kits on the database server, depending on the
routine’s language. External routines must be built and registered before you
can invoke them.

Parameter Styles for External Routines

Each routine must conform to a particular convention for the exchange of
parameters. These conventions are known as parameter styles. You assign a
particular parameter style to a routine during its registration with the
PARAMETER STYLE clause. Following are the available parameter styles and
their attributes.

© Copyright IBM Corp. 1993 - 2002 71

Table 1. Parameter styles

Parameter
style

Supported
language

Supported
routine type

Description

sQLl * C/C++

- OLE
. cosoLB

e UDFs

* stored
procedures

* methods

In addition to the parameters passed during invocation, the
following arguments are passed to the routine in the following
order:

* A null indicator for each parameter or result declared in the
CREATE statement.

* The SQLSTATE to be returned to DB2.

* The qualified name of the routine.

* The specific name of the routine.

* The SQL diagnostic string to be returned to DB2.

Depending on options specified in the CREATE statement and the

routine type, the following arguments can be passed to the routine
in the following order:

* A buffer for the scratchpad.
* The call type of the routine.

* The dbinfo structure (contains information about the database).

DB2sQL I . C/Cis

* OLE
+ COBOL

* stored
procedures

In addition to the parameters passed during invocation, the
following arguments are passed to the stored procedure in the
following order:

* A vector containing a null indicator for each parameter on the
CALL statement.

¢ The SQLSTATE to be returned to DB2.

* The qualified name of the stored procedure.

* The specific name of the stored procedure.

* The SQL diagnostic string to be returned to DB2.

If the DBINFO clause is specified in the CREATE PROCEDURE

statement, a dbinfo structure (it contains information about the
database) is passed to the stored procedure.

JAVA + Java™

e UDFs

* stored
procedures

PARAMETER STYLE JAVA routines use a parameter passing
convention that conforms to the Java language and SQLj Routines
specification.

For stored procedures, INOUT and OUT parameters will be passed
as single entry arrays to facilitate the returning of values. In
addition to the IN, OUT, and INOUT parameters, Java method
signatures for stored procedures include a parameter of type
ResultSet[] for each result set specified in the DYNAMIC RESULT
SETS clause of the CREATE PROCEDURE statement.

For PARAMETER STYLE JAVA UDFs and methods, no additional
arguments to those specified in the routine invocation are passed.

72 Programming Server Applications

Table 1. Parameter styles (continued)

Parameter Supported Supported Description
style language routine type
DB2GENERAL , Java « UDFs This type of routine will use a parameter passing convention that is

defined for use with Java methods. Unless you are developing table

UDFs, UDFs with scratchpads, or need access to the dbinfo
procedures structure, it is recommended that you use PARAMETER STYLE

* methods JAVA.

e stored

For PARAMETER STYLE DB2GENERAL routines, no additional
arguments to those specified in the routine invocation are passed.

A PARAMETER STYLE GENERAL stored procedure receives
parameters from the CALL statement in the invoking application or
routine. If the DBINFO clause is specified in the CREATE
PROCEDURE statement, a dbinfo structure (it contains information
about the database) is passed to the stored procedure.

GENERAL e C/C++ e stored
« COBOL procedures

GENERAL is the equivalent of SIMPLE stored procedures for DB2
Universal Database for OS/390 and z/OS.

A PARAMETER STYLE GENERAL WITH NULLS stored procedure
receives parameters from the CALL statement in the invoking
application or routine. Also included is a vector containing a null
indicator for each parameter on the CALL statement. If the
DBINFO clause is specified in the CREATE PROCEDURE
statement, a dbinfo structure (it contains information about the
database) is passed to the stored procedure.

GENERAL o C/Ct+ .
WITH NULLS

stored
« COBOL procedures

GENERAL WITH NULLS is the equivalent of SIMPLE WITH
NULLS stored procedures for DB2 Universal Database for OS/390
and z/0S.

Note:

1. For UDFs and methods, PARAMETER STYLE SQL is equivalent to
PARAMETER STYLE DB2SQL.

2. COBOL can only be used to develop stored procedures.

Related concepts:
+ ['DB2GENERAL Routines” on page 303

* ['Java Routines” on page 118|

Related reference:

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

¢ “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

* [‘Syntax for Passing Arguments to Routines Written in C/C++, OLE, 011
COBOL” on page 74|

Chapter 4. External Routines 73

Syntax for Passing Arguments to Routines Written in C/C++, OLE, or COBOL

In addition to the SQL arguments that are specified in the DML reference for
a routine, DB2 passes additional arguments to the external routine body. The
nature and order of these arguments is determined by the parameter style
with which you registered your routine. To ensure that information is
exchanged correctly between invokers and the routine body, you must ensure
that your routine accepts arguments in the order they are passed, according to
the parameter style being used. The sqludf include file can aid you in
handling and using these arguments.

The following parameter styles are applicable only to LANGUAGE C,
LANGUAGE OLE, and LANGUAGE COBOL routines.

Syntax for Passing Arguments to PARAMETER STYLE SQL Routines

sqlstate—routine-name
L' SQL-argument Y _SQL-argument- ind—\J

»—specific-name—diagnostic-message <
I—scratchpad—l l—cal l—type—l |—dbz'nfo—|

>

Syntax for Passing Arguments to PARAMETER STYLE DB2SQL Stored

Procedures
»>>- J sqlstate—routine-name >
L' SOL-argumentlSOL-argument-ind-array
»—specific-name—diagnostic-message _| ><
|—dbinfo

Syntax for Passing Arguments to PARAMETER STYLE GENERAL Stored
Procedures

>>- »><

H Labingo
Y _SQL-argument

Syntax for Passing Arguments to PARAMETER STYLE GENERAL WITH NULLS
Stored Procedures

74 Programming Server Applications

> >«

U—L Labingo]
Y_SQL-argument SQL-argument-ind-array—

Note: For UDFs and methods, PARAMETER STYLE SQL is equivalent to
PARAMETER STYLE DB2SQL.

The arguments for the above parameter styles are described as follows:

SQL-argqument...
Each SQL-argument represents one input or output value defined
when the routine was created. The list of arguments is determined as
follows:

* For a scalar function, one argument for each input parameter to the
function followed by one SQL-argument for the result of the
function.

* For a table function, one argument for each input parameter to the
function followed by one SQL-argument for each column in the
result table of the function.

* For a method, one SQL-argument for the subject type of the method,
then one argument for each input parameter to the method
followed by one SQL-argument for the result of the method.

* For a stored procedure, one SQL-argument for each parameter to the
stored procedure.

Each SQL-argument is used as follows:

* Input parameter of a function or method, subject type of a method,
or an IN parameter of a stored procedure

This argument is set by DB2 before calling the routine. The value of
each of these arguments is taken from the expression specified in
the routine invocation. It is expressed in the data type of the
corresponding parameter definition in the CREATE statement.

* Result of a function or method or an OUT parameter of a stored
procedure

This argument is set by the routine before returning to DB2. DB2
allocates the buffer and passes its address to the routine. The
routine puts the result value into the buffer. Enough buffer space is
allocated by DB2 to contain the value expressed in the data type.
For character types and LOBs, this means the maximum size, as
defined in the create statement, is allocated.

For scalar functions and methods, the result data type is defined in
the CAST FROM clause, if it is present, or in the RETURNS clause,
if no CAST FROM clause is present.

Chapter 4. External Routines 75

76

For table functions, DB2 defines a performance optimization where
every defined column does not have to be returned to DB2. If you
write your UDF to take advantage of this feature, it returns only the
columns required by the statement referencing the table function.
For example, consider a CREATE FUNCTION statement for a table
function defined with 100 result columns. If a given statement
referencing the function is only interested in two of them, this
optimization enables the UDF to return only those two columns for
each row and not spend time on the other 98 columns. See the
dbinfo argument below for more information on this optimization.

For each value returned, the routine should not return more bytes
than is required for the data type and length of the result.
Maximums are defined during the creation of the routine’s catalog
entry. An overwrite by the routine can cause unpredictable results
or an abnormal termination.

* INOUT parameter of a stored procedure

This argument behaves as both an IN and an OUT parameter and
therefore follows both sets of rules shown above. DB2 will set the
argument before calling the stored procedure. The buffer allocated
by DB2 for the argument is large enough to contain the maximum
size of the data type of the parameter defined in the CREATE
PROCEDURE statement. For example, an INOUT parameter of a
CHAR type could have a 10 byte varchar going in to the stored
procedure, and a 100 byte varchar coming out of the stored
procedure. The buffer is set by the stored procedure before
returning to DB2.

DB2 aligns the data for SQL-argument according to the data type and
the server platform.

SQL-argument-ind...

There is an SQL-argument-ind for each SQL-argument passed to the
routine. The nth SQL-argument-ind corresponds to the nth
SQL-argument and indicates whether the SQL-argument has a value or
is NULL.

Each SQL-argument-ind is used as follows:

* Input parameter of a function or method, subject type of a method,
or an IN parameter of a stored procedure
This argument is set by DB2 before calling the routine. It contains
one of the following values:
0 The argument is present and not NULL.
-1 The argument is present and its value is NULL.

If the routine is defined with RETURNS NULL ON NULL INPUT,
the routine body does not need to check for a NULL value.

Programming Server Applications

However, if it is defined with CALLED ON NULL INPUT, any
argument can be NULL and the routine should check
SQL-argument-ind before using the corresponding SQL-argument.

* Result of a function or method or an OUT parameter of a stored
procedure

This argument is set by the routine before returning to DB2. This
argument is used by the routine to signal if the particular result
value is NULL:
0 or positive

The result is not NULL.
negative

The result is the NULL value.

Even if the routine is defined with RETURNS NULL ON NULL
INPUT, the routine body must set the SQL-argument-ind of the
result. For example, a divide function could set the result to null
when the denominator is zero.

For scalar functions and methods, DB2 treats a NULL result as an
arithmetic error if the following is true:

— The database configuration parameter dft_sqlmathwarn is YES

— One of the input arguments is a null because of an arithmetic
error

This is also true if you define the function with the RETURNS
NULL ON NULL INPUT option

For table functions, if the UDF takes advantage of the optimization
using the result column list, then only the indicators corresponding
to the required columns need be set.

* INOUT parameter of a stored procedure

This argument behaves as both an IN and an OUT parameter and
therefore follows both sets of rules shown above. DB2 will set the
argument before calling the stored procedure. The SQL-argument-ind
is set by the stored procedure before returning to DB2.

Each SQL-argument-ind takes the form of a SMALLINT value. DB2
aligns the data for SQL-argument-ind according to the data type and
the server platform.

SQL-argument-ind-array
There is an element in SQL-argument-ind-array for each SQL-argument
passed to the stored procedure. The nth element in
SQL-argument-ind-array corresponds to the nth SQL-argument and
indicates whether the SQL-argument has a value or is NULL

Chapter 4. External Routines 77

78

sqlstate

Each element in SQL-argument-ind-array is used as follows:
¢ IN parameter of a stored procedure

This element is set by DB2 before calling the routine. It contains one
of the following values:

0 The argument is present and not NULL.

-1 The argument is present and its value is NULL.

If the stored procedure is defined with RETURNS NULL ON NULL
INPUT, the stored procedure body does not need to check for a
NULL value. However, if it is defined with CALLED ON NULL
INPUT, any argument can be NULL and the stored procedure
should check SQL-argument-ind before using the corresponding
SQL-arqument.

* OUT parameter of a stored procedure

This element is set by the routine before returning to DB2. This
argument is used by the routine to signal if the particular result
value is NULL:
0 or positive
The result is not NULL.
negative
The result is the NULL value.
* INOUT parameter of a stored procedure

This element behaves as both an IN and an OUT parameter and
therefore follows both sets of rules shown above. DB2 will set the
argument before calling the stored procedure. The element of
SQL-argument-ind-array is set by the stored procedure before
returning to DB2.

Each element of SQL-arqument-ind-array takes the form of a
SMALLINT value. DB2 aligns the data for SQL-argument-ind-array
according to the data type and the server platform.

This argument is set by the routine before returning to DB2. It can be
used by the routine to signal warning or error conditions. The routine
can set this argument to any value. The value ‘00000" means that no
warning or error situations were detected. Values that start with '01’
are warning conditions. Values that start with anything other than "00’
or ‘01" are error conditions. When the routine is called, the argument
contains the value "00000".

For error conditions, the routine returns an SQLCODE of -443. For
warning conditions, the routine returns an SQLCODE of +462. If the
SQLSTATE is 38001 or 38502, then the SQLCODE is -487.

The sglstate takes the form of a CHAR(5) value. DB2 aligns the data
for sglstate according to the data type and the server platform.

Programming Server Applications

routine-name
This argument is set by DB2 before calling the routine. It is the
qualified function name, passed from DB2 to the routine

The form of the routine-name that is passed is:
schema.routine

The parts are separated by a period. Two examples are:
PABLO.BLOOP ~ WILLIE.FINDSTRING

This form enables you to use the same routine body for multiple
external routines, and still differentiate between the routines when it
is invoked.

Note: Although it is possible to include the period in object names
and schema names, it is not recommended. For example, if a
function, ROTATE is in a schema, 0BJ.OP, the routine name that
is passed to the function is 0BJ.0P.ROTATE, and it is not obvious
if the schema name is 0BJ or 0BJ.OP.

The routine-name takes the form of a VARCHAR(257) value. DB2
aligns the data for routine-name according to the data type and the
server platform.

specific-name
This argument is set by DB2 before calling the routine. It is the
specific name of the routine passed from DB2 to the routine.

Two examples are:
WILLIE_FIND_FEB99 SQL9904281052440430

This first value is provided by the user in his CREATE statement. The
second value is generated by DB2 from the current timestamp when
the user does not specify a value.

As with the routine-name argument, the reason for passing this value is
to give the routine the means of distinguishing exactly which specific
routine is invoking it.

The specific-name takes the form of a VARCHAR(18) value. DB2 aligns
the data for specific-name according to the data type and the server
platform.

diagnostic-message
This argument is set by the routine before returning to DB2. The

routine can use this argument to insert message text in a DB2
message.

Chapter 4. External Routines 79

80

When the routine returns either an error or a warning, using the
sqlstate argument described previously, it can include descriptive
information here. DB2 includes this information as a token in its
message.

DB2 sets the first character to null before calling the routine. Upon
return, it treats the string as a C null-terminated string. This string
will be included in the SQLCA as a token for the error condition. At
least the first part of this string will appear in the SQLCA or DB2 CLP
message. However, the actual number of characters that will appear
depends on the lengths of the other tokens because DB2 may truncate
the tokens to conform to the limit on total token length imposed by
the SQLCA. Avoid using X'FF' in the text since this character is used
to delimit tokens in the SQLCA.

The routine should not return more text than will fit in the
VARCHAR(70) buffer that is passed to it. An overwrite by the routine
can cause unpredictable results or an abend.

DB2 assumes that any message tokens returned from the routine to
DB2 are in the same code page as the database. Your routine should
ensure that this is the case. If you use the 7-bit invariant ASCII subset,
your routine can return the message tokens in any code page.

The diagnostic-message takes the form of a VARCHAR(70) value. DB2
aligns the data for diagnostic-message according to the data type and
the server platform.

scratchpad

This argument is set by DB2 before invoking the UDF or method. It is
only present for functions and methods that specified the
SCRATCHPAD keyword during registration. This argument is a
structure, exactly like the structure used to pass a value of any of the
LOB data types, with the following elements:

* An INTEGER containing the length of the scratchpad. Changing the
length of the scratchpad will result in SQLCODE -450 (SQLSTATE
39501)

* The actual scratchpad initialized to all binary Os as follows:

— For scalar functions and methods, it is initialized before the first
call, and not generally looked at or modified by DB2 thereafter.

— For table functions, the scratchpad is initialized prior to the
FIRST call to the UDF if FINAL CALL is specified on the
CREATE FUNCTION. After this call, the scratchpad content is
totally under control of the table function. If NO FINAL CALL
was specified or defaulted for a table function, then the
scratchpad is initialized for each OPEN call, and the scratchpad
content is completely under control of the table function between

Programming Server Applications

call-type

OPEN calls. (This can be very important for a table function
used in a join or subquery. If it is necessary to maintain the
content of the scratchpad across OPEN calls, then FINAL CALL
must be specified in your CREATE FUNCTION statement. With
FINAL CALL specified, in addition to the normal OPEN, FETCH
and CLOSE calls, the table function will also receive FIRST and
FINAL calls, for the purpose of scratchpad maintenance and
resource release.)

The scratchpad can be mapped in your routine using the same type as
either a CLOB or a BLOB, since the argument passed has the same
structure.

Ensure your routine code does not make changes outside of the
scratchpad buffer. An overwrite by the routine can cause
unpredictable results, an abend, and might not result in a graceful
failure by DB2.

If a scalar UDF or method that uses a scratchpad is referenced in a
subquery, DB2 might decide to refresh the scratchpad between
invocations of the subquery. This refresh occurs after a final-call is
made, if FINAL CALL is specified for the UDE.

DB?2 initializes the scratchpad so that the data field is aligned for the
storage of any data type. This can result in the entire scratchpad
structure, including the length field, being improperly aligned.

This argument, if present, is set by DB2 before invoking the UDF or
method. This argument is present for all table functions and for scalar
functions and methods that specified FINAL CALL during registration

All the current possible values for call-type follow. Your UDF or
method should contain a switch or case statement that explicitly tests
for all the expected values, rather than containing “if A do AA, else if
B do BB, else it must be C so do CC” type logic. This is because it is
possible that additional call types may be added in the future, and if
you do not explicitly test for condition C you will have trouble when
new possibilities are added.

Notes:

1. For all values of call-type, it might be appropriate for the routine to
set a sqlstate and diagnostic-message return value. This information
will not be repeated in the following descriptions of each call-type.
For all calls DB2 will take the indicated action as described
previously for these arguments.

Chapter 4. External Routines 81

82

2. The include file sqludf.h is intended for use with routines. The
file contains symbolic defines for the following call-type values,
which are spelled out as constants.

For scalar functions and methods call-type contains:

SQLUDF_FIRST_CALL (-1)

This is the FIRST call to the routine for this statement.
The scratchpad (if any) is set to binary zeros when the
routine is called. All argument values are passed, and
the routine should do whatever one-time initialization
actions are required. In addition, a FIRST call to a
scalar UDF or method is like a NORMAL call, in that
it is expected to develop and return an answer.

Note: If SCRATCHPAD is specified but FINAL CALL
is not, then the routine will not have this
call-type argument to identify the very first call.
Instead, it will have to rely on the all-zero state
of the scratchpad.

SQLUDF_NORMAL_CALL (0)

This is a NORMAL call. All the SQL input values are
passed, and the routine is expected to develop and
return the result. The routine may also return sqlstate
and diagnostic-message information.

SQLUDF_FINAL_CALL (1)

This is a FINAL call, that is no SQL-argument or
SQL-argument-ind values are passed, and attempts to
examine these values may cause unpredictable results.
If a scratchpad is also passed, it is untouched from the
previous call. The routine is expected to release
resources at this point.

SQLUDF_FINAL_CRA (255)

Programming Server Applications

This is a FINAL call, identical to the FINAL call
described previously, with one additional
characteristic, namely that it is made to routines that
are defined as being able to issue SQL, and it is made
at such a time that the routine must not issue any
SQL except CLOSE cursor. (SQLCODE -396,
SQLSTATE 38505) For example, when DB2 is in the
middle of COMMIT processing, it can not tolerate
new SQL, and any FINAL call issued to a routine at
that time would be a 255 FINAL call. Routines that
are not defined as containing any level of SQL access

will never receive a 255 FINAL call, whereas routines
that do use SQL might be given either type of FINAL
call.

Releasing resources

A scalar UDF or method is expected to release resources it has
required, for example, memory. If FINAL CALL is specified for the
routine, then that FINAL call is a natural place to release resources,
provided that SCRATCHPAD is also specified and is used to track the
resource. If FINAL CALL is not specified, then any resource acquired
should be released on the same call.

For table functions call-type contains:

SQLUDEF_TF_FIRST (-2)
This is the FIRST call, which only occurs if the FINAL
CALL keyword was specified for the UDF. The
scratchpad is set to binary zeros before this call.
Argument values are passed to the table function, and
it may choose to acquire memory or perform other
one-time only resource initialization. This is not an
OPEN call, that call follows this one. On a FIRST call
the table function should not return any data to DB2
as DB2 ignores the data.

SQLUDF_TF_OPEN (-1)
This is the OPEN call. The scratchpad will be initialized
if NO FINAL CALL is specified, but not necessarily
otherwise. All SQL argument values are passed to the
table function on OPEN. The table function should not
return any data to DB2 on the OPEN call.

SOLUDEF_TF_FETCH (0)
This is a FETCH call, and DB2 expects the table
function to return either a row comprising the set of
return values, or an end-of-table condition indicated
by SQLSTATE value "02000". If scratchpad is passed to
the UDEF, then on entry it is untouched from the
previous call.

SQLUDF_TF_CLOSE (1)
This is a CLOSE call to the table function. It balances
the OPEN call, and can be used to perform any
external CLOSE processing (for example, closing a
source file), and resource release (particularly for the
NO FINAL CALL case).

Chapter 4. External Routines 83

84

In cases involving a join or a subquery, the
OPEN/FETCH.../CLOSE call sequences can repeat
within the execution of a statement, but there is only
one FIRST call and only one FINAL call. The FIRST
and FINAL call only occur if FINAL CALL is specified
for the table function.

SQLUDF_TF_FINAL (2)
This is a FINAL call, which only occurs if FINAL
CALL was specified for the table function. It balances
the FIRST call, and occurs only once per execution of
the statement. It is intended for the purpose of
releasing resources.

SQLUDF_TF_FINAL_CRA (255)
This is a FINAL call, identical to the FINAL call
described above, with one additional characteristic,
namely that it is made to UDFs which are defined as
being able to issue SQL, and it is made at such a time
that the UDF must not issue any SQL except CLOSE
cursor. (SQLCODE -396, SQLSTATE 38505) For
example, when DB2 is in the middle of COMMIT
processing, it can not tolerate new SQL, and any
FINAL call issued to a UDF at that time would be a
255 FINAL call. Note that UDFs which are not defined
as containing any level of SQL access will never
receive a 255 FINAL call, whereas UDFs which do use
SQL may be given either type of FINAL call.

Releasing resources

Write routines to release any resources that they acquire. For table
functions, there are two natural places for this release: the CLOSE call
and the FINAL call. The CLOSE call balances each OPEN call and can
occur multiple times in the execution of a statement. The FINAL call
only occurs if FINAL CALL is specified for the UDF, and occurs only
once per statement.

If you can apply a resource across all OPEN/FETCH/CLOSE
sequences of the UDEF, write the UDF to acquire the resource on the
FIRST call and free it on the FINAL call. The scratchpad is a natural
place to track this resource. For table functions, if FINAL CALL is
specified, the scratchpad is initialized only before the FIRST call. If
FINAL CALL is not specified, then it is reinitialized before each OPEN
call.

Programming Server Applications

dbinfo

If a resource is specific to each OPEN/FETCH/CLOSE sequence,
write the UDF to free the resource on the CLOSE call.

Note: When a table function is in a subquery or join, it is very
possible that there will be multiple occurrences of the
OPEN/FETCH/CLOSE sequence, depending on how the DB2
Optimizer chooses to organize the execution of the statement.

The call-type takes the form of an INTEGER value. DB2 aligns the data
for call-type according to the data type and the server platform.

This argument is set by DB2 before calling the routine. It is only
present if the CREATE statement for the routine specifies the DBINFO
keyword. The argument is the sqludf_dbinfo structure defined in the
header file sqludf.h. The variables in this structure that contain
names and identifiers may be longer than the longest value possible
in this release of DB2, but they are defined this way for compatibility
with future releases. You can use the length variable that complements
each name and identifier variable to read or extract the portion of the
variable that is actually used. The dbinfo structure contains the
following elements:

1. Database name length (dbnamelen)

The length of data base name below. This field is an unsigned
short integer.

2. Database name (dbname)

The name of the currently connected database. This field is a long
identifier of 128 characters. The data base name length field
described previously identifies the actual length of this field. It
does not contain a null terminator or any padding.

3. Application Authorization ID Length (authidlen)

The length of application authorization ID below. This field is an
unsigned short integer.

4. Application authorization ID (authid)

The application run-time authorization ID. This field is a long
identifier of 128 characters. It does not contain a null terminator
or any padding. The application authorization ID length field
described above identifies the actual length of this field.

5. Database code page (codepg)

This is a union of two 48-byte long structures; one is used by
DB2 Universal Database, the other is reserved for future use. The
structure used by DB2 Universal Database contains the following
fields:

a. SBCS. Single byte code page, an unsigned long integer.

b. DBCS. Double byte code page, an unsigned long integer.

Chapter 4. External Routines 85

86

10.

11.

12.

c. COMP. Composite code page, an unsigned long integer.
Schema name length (tbschemalen)

The length of schema name below. Contains 0 (zero) if a table
name is not passed. This field is an unsigned short integer.

Schema name (tbschema)

Schema for the table name below. This field is a long identifier of
128 characters. It does not contain a null terminator or any
padding. The schema name length field described previously
identifies the actual length of this field.

Table name length (tbnamelen)

The length of the fable name below. Contains 0 (zero) if a table
name is not passed. This field is an unsigned short integer.

Table name (tbname)

This is the name of the table being updated or inserted. This field
is set only if the routine reference is the right-hand side of a SET
clause in an UPDATE statement, or an item in the VALUES list of
an INSERT statement. This field is a long identifier of 128
characters. It does not contain a null terminator or any padding.
The table name length field described previously, identifies the
actual length of this field. The schema name field described
previously, together with this field form the fully qualified table
name.

Column name length (colnamelen)

Length of column name below. It contains a 0 (zero) if a column
name is not passed. This field is an unsigned short integer.

Column name (colname)

Under the exact same conditions as for table name, this field
contains the name of the column being updated or inserted;
otherwise, it is not predictable. This field is a long identifier of
128 characters. It does not contain a null terminator or any
padding. The column name length field described above, identifies
the actual length of this field.

Version/Release number (ver_rel)

An 8 character field that identifies the product and its version,
release, and modification level with the format pppvorrm where:
* ppp identifies the product as follows:

DSN DB2 Universal Database for z/OS or OS/390

ARI SQL/DS or DB2 for VM or VSE

QSQ DB2 Universal Database for iSeries

SQL DB2 Universal Database
e ov is a two digit version identifier.
* rris a two digit release identifier.

Programming Server Applications

13.

14.

15.

16.

17.

18.

19.

* m is a one digit modification level identifier.
Reserved field (resd0)

This field is for future use.

Platform (platform)

The operating platform for the application server, as follows:
SQLUDF_PLATFORM_AIX AIX
SQLUDF_PLATFORM_HP HP-UX
SQLUDF_PLATFORM_LINUX

Linux
SQLUDF_PLATFORM_MVS 0S/390
SQLUDF_PLATFORM_NT Windows NT, Windows 2000,

Windows XP
SQLUDF_PLATFORM_SUN Solaris Operating Environment
SOLUDF_PLATFORM_WINDOWS95

Windows 95, Windows 98,

Windows Me
SQLUDF_PLATFORM_UNKNOWN

Unknown platform

For additional platforms that are not contained in the above list,
see the contents of the sqludf.h file.

Number of table function column list entries (numtfcol)

The number of non-zero entries in the table function column list
specified in the table function column list field below.

Reserved field (resd1)

This field is for future use.

Routine id of the stored procedure that invoked the current
routine (procid)

The stored procedure’s routine id matches the ROUTINEID
column in SYSCAT.ROUTINES, which can be used to retrieve the

name of the invoking stored procedure. This field is a 32-bit
signed integer.

Reserved field (resd2)
This field is for future use.
Table function column list (tfcolumn)

If this is a table function, this field is a pointer to an array of
short integers that is dynamically allocated by DB2. If this is any
other type of routine, this pointer is null.

This field is used only for table functions. Only the first n entries,
where 7 is specified in the number of table function column list
entries field, numtfcol, are of interest. # may be equal to 0, and is
less than or equal to the number of result columns defined for

Chapter 4. External Routines 87

the function in the RETURNS TABLE(...) clause of the CREATE
FUNCTION statement. The values correspond to the ordinal
numbers of the columns that this statement needs from the table
function. A value of ‘1’ means the first defined result column, ‘2’
means the second defined result column, and so on, and the
values may be in any order. Note that # could be equal to zero,
that is, the variable numtfcol might be zero, for a statement
similar to SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ, where
no actual column values are needed by the query.

This array represents an opportunity for optimization. The UDF
need not return all values for all the result columns of the table
function, only those needed in the particular context, and these
are the columns identified (by number) in the array. Since this
optimization may complicate the UDF logic in order to gain the
performance benefit, the UDF can choose to return every defined
column.

20. Unique application identifier (appl_id)
This field is a pointer to a C null-terminated string that uniquely

identifies the application’s connection to DB2. It is generated by
DB2 at connect time.

The string has a maximum length of 32 characters, and its exact
format depends on the type of connection established between
the client and DB2. Generally it takes the form:

x.y.ts

where the x and y vary by connection type, but the s is a 12
character time stamp of the form YYMMDDHHMMSS, which is
potentially adjusted by DB2 to ensure uniqueness.

Example: *LOCAL.db2inst.980707130144
21. Reserved field (resd3)
This field is for future use.

Related concepts:

* ["Parameter Styles for External Routines” on page 71|
* ["Include File for C/C++ Routines (sqludf.h)” on page 102
 ["C/C++ Routines” on page 97|

Related tasks:
* ["Writing Routines” on page 29|

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2
* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

88 Programming Server Applications

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “Application ID” in the System Monitor Guide and Reference
* “CREATE METHOD statement” in the SQL Reference, Volume 2

SQL in External Routines

All routines written in an external programming language (such as C or Java)
can contain SQL.

The CREATE statements for each routine type (and in the case of methods,
CREATE TYPE) define the level of SQL access for a given routine. Based on
the nature of the SQL included in your routine, you must choose the
applicable clause:

NO SQL
the routine contains no SQL at all

CONTAINS SQL
Contains SQL, but neither reads nor writes data (for example: SET
SPECIAL REGISTER).

READS SQL DATA
Contains SQL that may read from tables (SELECT, VALUES
statements), but does not modify table data.

MODIFIES SQL DATA
Contains SQL that updates tables, either user tables directly (INSERT,
UPDATE, DELETE statements) or DB2’s catalog tables implicitly (DDL
statements). This clause is only applicable to stored procedures.

DB2® will validate at execution time that a routine does not exceed its defined
level. For example, if a routine defined as CONTAINS SQL tries to SELECT
from a table, an error (SQLCODE -579, SQLSTATE 38004) will result. Also
note that for nested references, only the same or more restrictive SQL levels
are allowed. For example, MODIFY routines can invoke READ routines, but
READ routines cannot invoke MODIFY routines.

A routine executes SQL statements within the database connection scope of
the calling application. A routine cannot establish its own connection, nor can
it reset the calling application’s connection (SQLCODE -751, SQLSTATE
38003).

Only a stored procedure defined as MODIFIES SQL DATA can issue COMMIT
and ROLLBACK statements. Other types of routines (UDFs and methods)
cannot issue COMMITs or ROLLBACKSs (SQLCODE -751, SQLSTATE 38003).
Even though a stored procedure defined as MODIFIES SQL DATA can
attempt to COMMIT or ROLLBACK a transaction, it is recommended that a

Chapter 4. External Routines 89

90

COMMIT or ROLLBACK be done from the calling application so changes are
not unexpectedly committed. Stored procedures cannot issue COMMIT or
ROLLBACK statements if the stored procedure was invoked from an
application that established a type 2 connection to the database.

Also, only stored procedures defined as MODIFIES SQL DATA can establish
their own savepoints, and rollback their own work within the savepoint.
Other types of routines (UDFs and methods) cannot establish their own
savepoints. A savepoint created within a stored procedure is not released
when the stored procedure completes. The application will be able to roll back
the savepoint. Similarly, a stored procedure could roll back a savepoint
defined in the application. DB2 will implicitly release any savepoints
established by the routine when it exits.

A routine may inform DB2 about whether it has succeeded by assigning an
SQLSTATE value to the sqlstate argument that DB2 passes to it. Some
parameter styles (PARAMETER STYLEs JAVA, GENERAL, and GENERAL
WITH NULLS) do not support the exchange of SQLSTATE values.

If, in handling the SQL issued by a routine, DB2 encounters an error, it
returns that error to the routine, just as it does for any application. For normal
user errors, the routine has an opportunity to take alternative or corrective
action. For example, if a routine is trying to INSERT to a table and gets a
duplicate key error (SQLCODE -813), it may instead decide to UPDATE the
existing row of the table.

There are, however, certain more serious errors that can occur that make it
impossible for DB2 to proceed in a normal fashion. Examples of these include
deadlock, or database partition failure, or user interrupt. Some of these errors
are propagated up to the calling application. Other severe errors that are unit
of work related go all the way out to either (a) the application, or (b) a stored
procedure that is permitted to issue transaction control statements (COMMIT
or ROLLBACK), whichever occurs first in backing out.

If one of these errors occurs during the execution of SQL issued by a routine,
the error is returned to the routine, but DB2 remembers that a serious error
has occurred. Additionally, in this case, DB2 will automatically fail (SQLCODE
-20139, SQLSTATE 51038) any subsequent SQL issued by this routine and by
any calling routines. The only exception to this is if the error only backs out to
the outermost stored procedure that is permitted to issue transaction control
statements. In this case, this stored procedure can continue to issue SQL.

Routines can issue both static and dynamic SQL, and in either case they must
be precompiled and bound if embedded SQL is used. For static SQL, the
information used in the precompile/bind process is the same as it is for any
client application using embedded SQL. For dynamic SQL, you can use the

Programming Server Applications

DYNAMICRULES precompile/bind option to control the current schema and
current authentication ID for embedded dynamic SQL. This behavior is
different for routines and applications.

The isolation level defined for the routine packages or statements is respected.
This can result in a routine running at a more restrictive, or a more generous,
isolation level than the calling application. This is important to consider when
calling a routine that has a less restrictive isolation level than the calling
statement. For example, if a cursor stability function is called from a
repeatable read application, the UDF may exhibit non-repeatable read
characteristics.

The invoking application or routine is not affected by any changes made by
the routine to special register values. Updatable special registers are inherited
by the routine from the invoker. Changes to updatable special registers are not
passed back to the invoker. Non-updatable special registers get their default
value. For further details on updatable and non-updatable special registers,
see the related topic, "Special registers”.

Routines can OPEN, FETCH, and CLOSE cursors in the same manner as client
applications. Multiple invocations (for example, in the case of recursion) of the
same function each get their own instance of the cursor. UDFs and methods
must close their cursors before the invoking statement completes, otherwise
an error will occur (SQLCODE -472, SQLSTATE 24517). The final call for a
UDF or method is a good time to close any cursors that remain open. Any
opened cursors not closed before completion in a stored procedure are
returned to the client application or calling routine as result sets.

Arguments passed to routines are not automatically treated as host variables.
This means for a routine to use a parameter as a host variable in its SQL, it
must declare its own host variable and copy the parameter value to this host
variable.

Note: Embedded SQL routines must be precompiled and bound with the
DATETIME option set to ISO.

Related tasks:

* “Customizing Precompile and Bind Options for SQL Procedures” in the
Application Development Guide: Building and Running Applications

Related reference:

¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2
¢ “BIND Command” in the Command Reference

Chapter 4. External Routines 91

* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

* “CREATE FUNCTION (External Table) statement” in the SQL Reference,
Volume 2

* “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

* “SQL statements allowed in routines” in the SQL Reference, Volume 1

* “CREATE PROCEDURE (External) statement” in the SQL Reference, Volume
2

* “CREATE PROCEDURE (SQL) statement” in the SQL Reference, Volume 2
* “Special registers” in the SQL Reference, Volume 1

Authorizations and Binding for External Routines that Contain SQL

When discussing authorization it is useful to distinguish some roles for the
routine and to mention some of the factors that influence the determination of
which ID assumes the role:

* Definer: The ID that performs the CREATE statement to register the routine.

* Package owner: The owner of a package that participates in the
implementation of a routine. It can be the ID that actually performs the
BIND, or if the OWNER precompile/bind option is used, another ID.

* Invoker: The ID that invokes the routine. For dynamic SQL, it can be the
runtime authorization ID of the immediately higher-level routine or
application (this ID depends on the DYNAMICRULES option with which
the higher-level routine/application was bound). For static SQL, it can be
the value of the OWNER precompile/bind option of the package that
contains the reference to the routine.

For example, if this referencing package is an application running dynamic
SQL and was bound with DYNAMICRULES BIND, then its run-time
authorization ID will be its package owner, not the person invoking the
package. Also, the package owner will be the actual binder or the value of
the OWNER precompile/bind option. In this case, the invoker of the
routine assumes this value rather than the ID of the user who is executing
the application.

92 Programming Server Applications

Notes:

1.

For static SQL within a routine, the package owner’s privileges must be
adequate for the SQL actions. These actions include table access, and the
execute privilege on any (nested) references to routines.

For dynamic SQL within a routine, the userid whose privileges will be
validated are governed by the DYNAMICRULES option of the BIND of
the routine body.

The routine package owner must GRANT EXECUTE on the package to the
routine definer. This can be done before or after the routine is registered,
but it must be done before the routine is invoked.

The routine definer is automatically given EXECUTE WITH GRANT
privilege on the routine; the definer must GRANT EXECUTE on the
routine to PUBLIC or to any users who are intended to use the routine.

It is the definer’s authorization to use the packages of a routine that is
checked, not the invoker’s. Thus the definer, in a sense, encapsulates the
privilege of running any packages associated with the routine. It is at
package load time that the definer’'s EXECUTE privilege on the package is
verified. This is true for each package associated with the routine.

To correctly create and use an external routine that contains SQL:

1.

Definer performs the appropriate CREATE statement to register the
routine. This defines the routine to DB2® with its intended level of SQL
access, establishes the routine signature, and also points to the routine
executable, so the definer needs to be effectively communicating with the
package owners and authors of the routine programs. By virtue of a
successful CREATE statement, definer has EXECUTE WITH GRANT
privilege on the routine.

Definer must grant EXECUTE privilege on the routine to any users who
are to be permitted use of the routine. (If the package for this routine will
recursively call this routine, then this step must be done before the next
step.)

Package owners precompile and bind the routine programs, or have it
done on their behalf. By virtue of successful precompile and bind, the
package owners are each given EXECUTE privilege on the respective
packages. This step follows step one in this list only to cover the
possibility of SQL recursion in the routine. If such recursion does not exist
in any particular case, the precompile/bind could precede the CREATE
statement.

The package owners each must grant EXECUTE privilege on their
respective packages to the definer of the routine. This step must come at
some time after the previous step.

Static usage of the routine: the bind owner of the package referencing the
routine must have been given EXECUTE privilege on the routine, so the

Chapter 4. External Routines 93

previous step must be completed at this point. When the routine executes,
DB2 verifies that the definer has the EXECUTE privilege on any package
that is needed, so step 3 must be completed for each such package.

Dynamic usage of the routine: the authorization ID as controlled by the
DYNAMICRULES option for the invoking application must have
EXECUTE privilege on the routine (step 4), and the definer of the routine
must have the EXECUTE privilege on the packages (step 3).

Related concepts:

“Privileges, authorities, and authorization” in the Administration Guide:
Implementation

e [“Effects of DYNAMICRULES on Dynamic SQL” on page 9
y pag

“Procedure, function, and method privileges” in the Administration Guide:
Implementation

Related reference:

“CREATE FUNCTION statement” in the SQL Reference, Volume 2
“CREATE PROCEDURE statement” in the SQL Reference, Volume 2
“BIND Command” in the Command Reference

Effects of DYNAMICRULES on Dynamic SQL

94

The PRECOMPILE and BIND option DYNAMICRULES determines what
values apply at run-time for the following dynamic SQL attributes:

The authorization ID that is used during authorization checking.
The qualifier that is used for qualification of unqualified objects.

Whether the package can be used to dynamically prepare the following
statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT ON,
RENAME, SET INTEGRITY and SET EVENT MONITOR STATE statements.

In addition to the DYNAMICRULES value, the run-time environment of a
package controls how dynamic SQL statements behave at run-time. The two
possible run-time environments are:

The package runs as part of a stand-alone program
The package runs within a routine context

The combination of the DYNAMICRULES value and the run-time
environment determine the values for the dynamic SQL attributes. That set of
attribute values is called the dynamic SQL statement behavior. The four
behaviors are:

Run behavior DB2® uses the authorization ID of the user (the ID that

initially connected to DB2) executing the package as the value

Programming Server Applications

Bind behavior

to be used for authorization checking of dynamic SQL
statements and for the initial value used for implicit
qualification of unqualified object references within dynamic
SQL statements.

At run-time, DB2 uses all the rules that apply to static SQL for
authorization and qualification. That is, take the authorization
ID of the package owner as the value to be used for
authorization checking of dynamic SQL statements and the
package default qualifier for implicit qualification of
unqualified object references within dynamic SQL statements.

Define behavior

Define behavior applies only if the dynamic SQL statement is
in a package that is run within a routine context, and the
package was bound with DYNAMICRULES DEFINEBIND or
DYNAMICRULES DEFINERUN. DB2 uses the authorization
ID of the routine definer (not the routine’s package binder) as
the value to be used for authorization checking of dynamic
SQL statements and for implicit qualification of unqualified
object references within dynamic SQL statements within that
routine.

Invoke behavior

Invoke behavior applies only if the dynamic SQL statement is
in a package that is run within a routine context, and the
package was bound with DYNAMICRULES INVOKEBIND or
DYNAMICRULES INVOKERUN. DB2 uses the current
statement authorization ID in effect when the routine is
invoked as the value to be used for authorization checking of
dynamic SQL and for implicit qualification of unqualified
object references within dynamic SQL statements within that
routine. This is summarized by the following table:

Invoking Environment ID Used

Any static SQL

Implicit or explicit value of the OWNER
of the package the SQL invoking the
routine came from.

Used in definition of view or trigger Definer of the view or trigger.

Dynamic SQL from a run behavior ID used to make the initial connection to
package DB2.

Dynamic SQL from a define behavior Definer of the routine that uses the
package package that the SQL invoking the

routine came from.

Dynamic SQL from an invoke behavior Current® authorization ID invoking the

package

routine.

Chapter 4. External Routines 95

The following table shows the combination of the DYNAMICRULES value
and the run-time environment that yields each dynamic SQL behavior.

Table 2. How DYNAMICRULES and the Run-Time Environment Determine Dynamic SQL Statement

Behavior

DYNAMICRULES Value

Behavior of Dynamic SQL
Statements in a Standalone
Program Environment

Behavior of Dynamic SQL
Statements in a Routine
Environment

BIND Bind behavior Bind behavior
RUN Run behavior Run behavior
DEFINEBIND Bind behavior Define behavior
DEFINERUN Run behavior Define behavior
INVOKEBIND Bind behavior Invoke behavior
INVOKERUN Run behavior Invoke behavior

Table 3. Definitions of Dynamic SQL Statement Behaviors

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Dynamic SQL

Setting for

Setting for

Setting for

Setting for Dynamic

the OWNER
BIND option

package owner)

Attribute Dynamic SQL Dynamic SQL Dynamic SQL SQL Attributes:
Attributes: Bind | Attributes: Run | Attributes: Define |Invoke Behavior
Behavior Behavior Behavior

Authorization | The implicit or ID of User Routine definer (not | Current statement

ID explicit value of | Executing Package | the routine’s authorization ID when

routine is invoked.

GRANT,
REVOKE,
ALTER,
CREATE, DROP,
COMMENT
ON, RENAME,
SET INTEGRITY
and SET EVENT
MONITOR
STATE

Default qualifier | The implicit or CURRENT Routine definer (not | Current statement

for unqualified |explicit value of |SCHEMA Special |the routine’s authorization ID when

objects the QUALIFIER Register package owner) routine is invoked.
BIND option

Can execute No Yes No No

96 Programming Server Applications

Table 3. Definitions of Dynamic SQL Statement Behaviors (continued)

Dynamic SQL
Attribute

Setting for Setting for Setting for Setting for Dynamic
Dynamic SQL Dynamic SQL Dynamic SQL SQL Attributes:
Attributes: Bind | Attributes: Run | Attributes: Define |Invoke Behavior
Behavior Behavior Behavior

Related concepts:

* “Authorization Considerations for Dynamic SQL” in the Application
Development Guide: Programming Client Applications

C/C++ Routines

C/C++

The following sections describe how to write C or C++ routines.

Routines

When developing routines in C or C++, it is strongly recommended that you
register them using the PARAMETER STYLE SQL clause in the CREATE
statement. It is also recommended that you use the sqludf.h include file. It
contains structures, definitions and values useful when writing both UDFs
and stored procedures.

C/C++ UDFs and Methods:

The C/C++ signature of PARAMETER STYLE SQL UDFs and methods
follows this format:
SQL_API RC SQL_API FN function-name (SQL-arguments,
SQL-argument-inds,
SQLUDF_TRAIL_ARGS)

SQL_API_RC SQL_API FN
SQL_API_RC and SQL_API_FN are macros that specify the return type
and calling convention for a C/C++ function, which can vary across
supported operating systems. They are declared in sqlsystm.h. This
macro is required when you write C/C++ routines.

function-name
Name of the C/C++ function. During routine registration, this value is
specified with the library name in the EXTERNAL NAME clause of
the CREATE PROCEDURE statement. For C++ routines, the C++
compiler applies type decoration to the entry point name. Either the
type decorated name needs to be specified in the EXTERNAL NAME
clause, or the entry point should be defined as extern "C" in the user
code.

Chapter 4. External Routines 97

SQL-argquments
Corresponds to the list of input parameters in the routine’s CREATE
statement.

SQL-argument-inds
For every SQL-argument there is an indicator variable. Define each
indicator with the SQLUDF_NULLIND type definition from sqludf.h.

SQLUDF_TRAIL_ARGS
A macro defined in sqludf.h that defines the trailing arguments for a
routine. This includes pointers to the SQLSTATE, fully qualified
function name, function specific name, and message text. If your UDF
is registered with SCRATCHPAD and FINAL CALL, use the
SQLUDF_TAIL_ARGS_ALL macro. In addition to the arguments included
in SQLUDF_TRAIL_ARGS, it contains pointers to the scratchpad, and call

type.

The following is an example of a C/C++ UDF that returns the product of its
two input arguments:

SQL_API RC SQL_API FN product (SQLUDF_DOUBLE =*inl,
SQLUDF_DOUBLE *in2,
SQLUDF_DOUBLE *outProduct,
SQLUDF_NULLIND *in1NullInd,
SQLUDF_NULLIND *in2NullInd,
SQLUDF_NULLIND #*productNullInd,
SQLUDF_TRAIL_ARGS)

{

*outProduct = (*inl) = (*in2);

return (0);

}

The corresponding CREATE FUNCTION statement for this UDF is as follows:

CREATE FUNCTION product(double inl, double in2)
RETURNS double
LANGUAGE ¢
PARAMETER STYLE sql
NO SQL
FENCED THREADSAFE
DETERMINISTIC
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION
EXTERNAL NAME 'c_rtns!product’

The preceding statement assumes that the C/C++ function is in a library
called c_rtns.

C/C++ Stored Procedures:

98 Programming Server Applications

The C/C++ signature of PARAMETER STYLE SQL stored procedures follows
this format:
SQL_API_RC SQL_API_FN function-name (SQL-arguments,

SQL-argument-inds,

sqlstate,

routine-name,

specific-name,

diagnostic-message)

SQL_API_RC SQL_API_FN
SQL_API_RC and SQL_API_FN are macros that specify the return type
and calling convention for a C/C++ function, which can vary across
supported operating systems. They are declared in sqlsystm.h. This
macro is required when you write C/C++ routines.

function-name
Name of the C/C++ function. During routine registration, this value is
specified with the library name in the EXTERNAL NAME clause of
the CREATE PROCEDURE statement. For C++ routines, the C++
compiler applies type decoration to the entry point name. Either the
type decorated name needs to be specified in the EXTERNAL NAME
clause, or the entry point should be defined as external "C” in the user
code.

SQL-arguments
Corresponds to the list of input parameters in the CREATE
PROCEDURE statement. OUT or INOUT mode parameters are passed
as single-element arrays.

sqlstate Used by the routine to signal warning or error conditions.

routine-name
The qualified function name. This value is generated by DB2® and
passed to the routine in the form schema.routine. This value
corresponds to the ROUTINESCHEMA and ROUTINENAME columns
in the SYSCAT.ROUTINES view.

specific-name
The specific function name. This value is generated by DB2 and
passed to the routine. This value corresponds to the SPECIFICNAME
column in the SYSCAT.ROUTINES view.

diagnostic-message
Used by the routine to return message text to the invoking application
or routine.

Note: Unlike the function signature presented in the C/C++ UDF and
Methods section, the function signature presented for C/C++ Stored
Procedures does not make use of macros declared in sqludf.h. It is,
however, possible to write C/C++ stored procedures with the sqludf.h

Chapter 4. External Routines 99

100

macros. Conversely, it is also possible to write C/C++ UDFs and
methods without the sqludf.h macros.

The following is an example of a C/C++ stored procedure that accepts an
input parameter, and then returns an output parameter and a result set:
SQL_API_RC SQL_API_FN cstp (sqlintl6 =inParm,

double *outParm,

sqlintl6 *inParmNulllInd,

sqlintl6e xoutParmNullInd,

char sqlst[6],

char qualname[28],

char specname[19],

char diagmsg[71])

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
sqlintl6 sql_inParm;
EXEC SQL END DECLARE SECTION;

sql_inParm = *inParm;

EXEC SQL DECLARE curl CURSOR FOR
SELECT value
FROM table01
WHERE index = :sql_inParm;

*outParm = (*inParm) + 1;
EXEC SQL OPEN curl;

return (0);

}

The corresponding CREATE PROCEDURE statement for this stored procedure
is as follows:
CREATE PROCEDURE cproc(IN inParm INT, OUT outParm INT)

LANGUAGE c

PARAMETER STYLE sql

DYNAMIC RESULT SETS 1

FENCED THREADSAFE

RETURNS NULL ON NULL INPUT

EXTERNAL NAME 'c_rtns!cstp'

The preceding statement assumes that the C/C++ function is in a library
called c_rtns.

Note: When registering a C or C++ routine on Windows® operating systems,
take the following precaution when identifing a routine body in the

Programming Server Applications

CREATE statement’s EXTERNAL NAME clause. If you use an absolute
path id to identify the routine body, you must append the .dll
extension. For example:

CREATE PROCEDURE getSalary(IN inParm INT, OUT outParm INT)
LANGUAGE ¢
PARAMETER STYLE sql
DYNAMIC RESULT SETS 1
FENCED THREADSAFE
RETURNS NULL ON NULL INPUT
EXTERNAL NAME 'd:\mylib\myfunc.d11'

Related concepts:

“Database Manager Instances” in the Application Development Guide: Building
and Running Applications

“AIX Export Files for Routines” in the Application Development Guide:
Building and Running Applications

“AIX Routines and the CREATE Statement” in the Application Development
Guide: Building and Running Applications

[“Include File for C/C++ Routines (sqludf.h)” on page 102|
[‘SQL Data Type Handling in C/C++ Routines” on page 106|

Related tasks:

“Building C Routines on AIX” in the Application Development Guide: Building
and Running Applications

“Building C++ Routines on AIX” in the Application Development Guide:
Building and Running Applications

“Building C/C++ Routines on Windows” in the Application Development
Guide: Building and Running Applications

“Building C Routines on HP-UX” in the Application Development Guide:
Building and Running Applications

“Building C++ Routines on HP-UX” in the Application Development Guide:
Building and Running Applications

“Building C Routines on Linux” in the Application Development Guide:
Building and Running Applications

“Building C++ Routines on Linux” in the Application Development Guide:
Building and Running Applications

“Building C Routines on Solaris” in the Application Development Guide:
Building and Running Applications

“Building C++ Routines on Solaris” in the Application Development Guide:
Building and Running Applications

Related reference:

“CREATE FUNCTION statement” in the SQL Reference, Volume 2

Chapter 4. External Routines 101

102

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

e “C/C++ Samples” in the Application Development Guide: Building and
Running Applications

* ['Syntax for Passing Arguments to Routines Written in C/C++, OLE, o1
COBOL” on page 74|

Related samples:
* “spserver.c -- Definition of various types of stored procedures (CLI)”

* “udfcli.c -- How to work with different types of user-defined functions
(UDFs) (CLI)”

» “spserver.sqC -- A variety of types of stored procedures (C++)”

* “udfemsrv.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

* “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined
functions. (C)”

Include File for C/C++ Routines (sqludf.h)

The sqludf.h include file contains structures, definitions, and values that are
useful when writing routines. Although this file has "udf’ in its name, (for
historical reasons) it is also useful for stored procedures and methods. When
compiling your routine, you need to reference the directory that contains this
file. This directory is sq11ib/include.

The sqludf.h include file is self-describing. Following is a brief summary of
its content:

1. Structure definitions for the passed arguments that are structures:
* VARCHAR FOR BIT DATA arguments and result
* LONG VARCHAR (with or without FOR BIT DATA) arguments and
result
* LONG VARGRAPHIC arguments and result
 All the LOB types, SQL arguments and result
* The scratchpad
* The dbinfo structure

2. C language type definitions for all the SQL data types, for use in the
definition of routine arguments corresponding to SQL arguments and
result having the data types. These are the definitions with names
SQLUDEF_x and SQLUDEF_x_FBD where x is a SQL data type name, and
FBD represents For Bit Data.

Also included is a C language type for an argument or result that is
defined with the AS LOCATOR clause. This is applicable only to UDFs
and methods.

Programming Server Applications

3. Definition of C language types for the scratchpad and call-type arguments,
with an enum type definition of the call-type argument.

4. Macros for defining the standard trailing arguments, both with and
without the inclusion of scratchpad and call-type arguments. This
corresponds to the presence and absence of SCRATCHPAD and FINAL
CALL keywords in the function definition. These are the SQL-state,
function-name, specific-name, diagnostic-message, scratchpad, and call-type UDF
invocation arguments. Also included are definitions for referencing these
constructs, and the various valid SQLSTATE values.

5. Macros for testing whether the SQL arguments are null.

A corresponding include file for COBOL exists: sqludf.cbl1. This file only
includes definitions for the scratchpad and dbinfo structures.

Related concepts:
* ['SQL Data Type Handling in C/C++ Routines” on page 106|
* ["C/C++ Routines” on page 97|

Related reference:

* [“Syntax for Passing Arguments to Routines Written in C/C++, OLE, o1
COBOL” on page 74|

* [“Supported SQL Data Types in C/C++” on page 103|

Supported SQL Data Types in C/C++
The following table lists the supported mappings between SQL data types and
C data types for routines. Accompanying each C/C++ data type is the
corresponding defined type from sqludf.h.

Table 4. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type C/C++ Data Type SQL Column Type Description

SMALLINT sqlint16 16-bit signed integer
SQLUDF_SMALLINT

INTEGER sqlint32 32-bit signed integer
SQLUDF_INTEGER

BIGINT sqlint64 64-bit signed integer
SQLUDF_BIGINT

REAL float Single-precision floating point

FLOAT(n1) where 1<=n<=24 SQLUDF_REAL

DOUBLE double Double-precision floating point

FLOAT SQLUDF_DOUBLE

FLOAT(n) where 25<=n<=53

DECIMAL(p, s) Not supported. To pass a decimal value, define the parameter
to be of a data type castable from DECIMAL
(for example CHAR or DOUBLE) and
explicitly cast the argument to this type.

Chapter 4. External Routines 103

Table 4. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type

C/C++ Data Type

SQL Column Type Description

CHAR(n)

char[n+1] where n is large enough Fixed-length, null-terminated character string

to hold the data
1<=n<=254

SQLUDF_CHAR

CHAR(n) FOR BIT DATA

char[n+1] where n is large enough Fixed-length, null-terminated character string

to hold the data
1<=n<=254

SQLUDF_CHAR

VARCHAR(n)

char[n+1] where n is large enough

to hold the data
1<=n<=32 672

SQLUDF_VARCHAR

Null-terminated varying length string

VARCHAR(n) FOR BIT DATA

struct {
sqluint16 length;
char[n]

)
1<=n<=32 672

SQLUDF_VARCHAR_FBD

Not null-terminated varying length character
string

LONG VARCHAR

struct {
sqluintl6 length;
char[n]

1
1<=n<=32 700

SQLUDF_LONG

Not null-terminated varying length character
string

CLOB(n) struct { Not null-terminated varying length character
sqluint32 length; string with 4-byte string length indicator
char data[n];

}
1<=n<=2 147 483 647
SQLUDF_CLOB

BLOB(n) struct { Not null-terminated varying binary string
sqluint32 length; with 4-byte string length indicator
char data[n];

)
1<=n<=2 147 483 647

SQLUDF_BLOB

104 Programming Server Applications

Table 4. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type

C/C++ Data Type

SQL Column Type Description

DATE

char[11]
SQLUDF_DATE

Null-terminated character string of the
following format:

yyyy-mm-dd

TIME char[9] Null-terminated character string of the
SQLUDF_TIME following format:
hh.mm.ss
TIMESTAMP char[27] Null-terminated character string of the

SQLUDF_STAMP

following format:
yyyy-mm-dd-hh.mm.ss.nnnnnn

LOB LOCATOR

sqluint32
SQLUDF_LOCATOR

32-bit signed integer

DATALINK

struct {
sqluint32 version;
char linktype[4];
sqluint32 url_length;
sqluint32 comment_length;
char reserve2[8];

char url_plus_comment[230];

}

SQLUDF_DATALINK

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the

WCHARTYPE NOCONVERT option.

GRAPHIC(n) sqldbchar[n+1] where n is large Fixed-length, null-terminated double-byte
enough to hold the data character string
1<=n<=127
SQLUDF_GRAPH

VARGRAPHIC(n) sqldbchar[n+1] where n is large Not null-terminated, variable-length

enough to hold the data
1<=n<=16 336

SQLUDF_GRAPH

double-byte character string

LONG VARGRAPHIC

struct |{
sqluint16 length;
sqldbchar([n]

}

1<=n<=16 350

SQLUDF_LONGVARG

Not null-terminated, variable-length
double-byte character string

Chapter 4. External Routines

105

Table 4. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type C/C++ Data Type SQL Column Type Description
DBCLOB(n) struct { Not null-terminated varying length character
sqluint32 length; string with 4-byte string length indicator

sqldbchar data[n];
}

1<=n<=1073 741 823

SQLUDF_DBCLOB

106

Related concepts:

* ['Include File for C/C++ Routines (sqludf.h)” on page 102

* I"'SQL Data Type Handling in C/C++ Routines” on page 106
+ [“C/C++ Routines” on page 97|

SQL Data Type Handling in C/C++ Routines

This section identifies the valid types for routine parameters and results, and
it specifies how the corresponding argument should be defined in your C or
C++ language routine. All arguments in the routine must be passed as
pointers to the appropriate data type. Note that if you use the sqludf.h
include file and the types defined there, you can automatically generate
language variables and structures that are correct for the different data types
and compilers. For example, for BIGINT you can use the SQLUDF_BIGINT
data type to hide differences in the type required for BIGINT representation
between different compilers.

It is the data type for each parameter defined in the routine’s CREATE
statement that governs the format for argument values. Promotions from the
argument’s data type may be needed to get the value in the appropriate
format. Such promotions are performed automatically by DB2® on argument
values. However, if incorrect data types are specified in the routine code, then
unpredictable behavior, such as loss of data or abends, will occur.

For the result of a scalar function or method, it is the data type specified in

the CAST FROM clause of the CREATE FUNCTION statement that defines

the format. If no CAST FROM clause is present, then the data type specified
in the RETURNS clause defines the format.

In the following example, the presence of the CAST FROM clause means that
the routine body returns a SMALLINT and that DB2 casts the value to
INTEGER before passing it along to the statement where the function
reference occurs:

. RETURNS INTEGER CAST FROM SMALLINT ...

Programming Server Applications

In this case, the routine must be written to generate a SMALLINT, as defined
later in this section. Note that the CAST FROM data type must be castable to
the RETURNS data type, therefore, it is not possible to arbitrarily choose
another data type.

The following is a list of the SQL types and their C/C++ language
representations. It includes information on whether each type is valid as a
parameter or a result. Also included are examples of how the types could
appear as an argument definition in your C or C++ language routine:
s SMALLINT

Valid. Represent in C as SQLUDF_SMALLINT or sqlint16.

Example:

sqlintl6 *argl; /* example for SMALLINT =*/

When defining integer routine parameters, consider using INTEGER rather
than SMALLINT because DB2 does not promote INTEGER arguments to
SMALLINT. For example, suppose you define a UDF as follows:

CREATE FUNCTION SIMPLE(SMALLINT)...

If you invoke the SIMPLE function using INTEGER data,

(... SIMPLE(1)...), you will receive an SQLCODE -440 (SQLSTATE 42884)
error indicating that the function was not found, and end-users of this
function might not perceive the reason for the message. In the preceding
example, 1 is an INTEGER, so you can either cast it to SMALLINT or
define the parameter as INTEGER.

* INTEGER or INT

Valid. Represent in C as SQLUDF_INTEGER or sqlint32. You must #include
sqludf.h or #include sqlsystm.h to pick up this definition.

Example:
sqlint32 *xarg2; /* example for INTEGER */
* BIGINT
Valid. Represent in C as SQLUDF_BIGINT or sqlint64.
Example:
sqlint64 =*arg3; /* example for INTEGER */

DB2 defines the sqlint64 C language type to overcome differences between
definitions of the 64-bit signed integer in compilers and operating systems.
You must #include sqludf.h or #include sqlsystm.h to pick up the
definition.

* REAL or FLOAT(n) where 1 <=n <= 24
Valid. Represent in C as SQLUDF_REAL or float.

Example:

Chapter 4. External Routines 107

float *result; /* example for REAL */
* DOUBLE or DOUBLE PRECISION or FLOAT or FLOAT(n) where 25 <= n

<= 53
Valid. Represent in C as SQLUDF_DOUBLE or double.
Example:

double =*result; /* example for DOUBLE =/

* DECIMAL(p,s) or NUMERIC(p,s)

Not valid because there is no C language representation. If you want to
pass a decimal value, you must define the parameter to be of a data type
castable from DECIMAL (for example CHAR or DOUBLE) and explicitly
cast the argument to this type. In the case of DOUBLE, you do not need to
explicitly cast a decimal argument to a DOUBLE parameter, as DB2
promotes it automatically.

Example:

Suppose you have two columns, WAGE as DECIMAL(5,2) and HOURS as
DECIMAL(4,1), and you wish to write a UDF to calculate weekly pay based
on wage, number of hours worked and some other factors. The UDF could
be as follows:

CREATE FUNCTION WEEKLY_ PAY (DOUBLE, DOUBLE, ...)
RETURNS DECIMAL(7,2) CAST FROM DOUBLE

For the preceding UDF, the first two parameters correspond to the wage
and number of hours. You invoke the UDF WEEKLY_PAY in your SQL
select statement as follows:

SELECT WEEKLY_PAY (WAGE, HOURS, ...) ...

Note that no explicit casting is required because the DECIMAL arguments
are castable to DOUBLE.

Alternatively, you could define WEEKLY_PAY with CHAR arguments as
follows:

CREATE FUNCTION WEEKLY PAY (VARCHAR(6), VARCHAR(5), ...)
RETURNS DECIMAL (7,2) CAST FROM VARCHAR(10)

You would invoke it as follows:
SELECT WEEKLY_PAY (CHAR(WAGE), CHAR(HOURS), ...) ...;

Observe that explicit casting is required because DECIMAL arguments are
not promotable to VARCHAR.

An advantage of using floating point parameters is that it is easy to
perform arithmetic on the values in the routine; an advantage of using

108 Programming Server Applications

character parameters is that it is always possible to exactly represent the
decimal value. This is not always possible with floating point.

CHAR(n) or CHARACTER(n) with or without the FOR BIT DATA modifier.

Valid. Represent in C as SQLUDF_CHAR or char...[n+1] (thisisa C
null-terminated string).

Example:
char argl[14]; /* example for CHAR(13) */
char *argl; /* also acceptable */

For a CHAR(n) parameter (with or without FOR BIT DATA), DB2 always
moves 71 bytes of data to the buffer and sets the n+1 byte to null (X'00"). For
a RETURNS CHAR(n) value not specified as FOR BIT DATA or an output
parameter of a stored procedure, DB2 will look for a null CHAR embedded
in the first n bytes. If one is found, DB2 will pad from that point through to
n bytes with blanks.

If FOR BIT DATA is specified, exercise caution about using the normal C
string handling functions in the routine. Many of these functions look for a
null to delimit the string, and the null-character (X'00') could be a legitimate
character in the middle of the data value.

When defining character routine parameters, consider using VARCHAR
rather than CHAR as DB2 does not promote VARCHAR arguments to
CHAR and string literals are automatically considered as VARCHARs. For
example, suppose you define a UDF as follows:

CREATE FUNCTION SIMPLE(INT,CHAR(1))...

If you invoke the SIMPLE function using VARCHAR data,

(... SIMPLE(1,'A")...), you will receive an SQLCODE -440 (SQLSTATE
42884) error indicating that the function was not found, and end-users of
this function might not perceive the reason for the message. In the
preceding example, 'A' is VARCHAR, so you can either cast it to CHAR or
define the parameter as VARCHAR.

VARCHAR(n) FOR BIT DATA or LONG VARCHAR with or without the
FOR BIT DATA modifier.

Valid. Represent VARCHAR(n) FOR BIT DATA in C as SQLUDF_VARCHAR_FBD.
Represent LONG VARCHAR in C as SQLUDF_LONG. Otherwise represent
these two SQL types in C as a structure similar to the following from the
sqludf.h include file:

struct sqludf_vc_fhd

{
unsigned short Tength; /* length of data =/

char data[1]; /+ first char of data */
}s

Chapter 4. External Routines 109

110

The [1] indicates an array to the compiler. It does not mean that only one
character is passed; because the address of the structure is passed, and not
the actual structure, it provides a way to use array logic.

These values are not represented as C null-terminated strings because the
null-character could legitimately be part of the data value. The length is
explicitly passed to the routine for parameters using the structure variable
Tength. For the RETURNS clause, the length that is passed to the routine is
the length of the buffer. What the routine body must pass back, using the
structure variable length, is the actual length of the data value.

Example:

struct sqludf_vc_fbd *argl; /* example for VARCHAR(n) FOR BIT DATA */
struct sqludf _vc_fbd *result; /* also for LONG VARCHAR FOR BIT DATA */

VARCHAR(n) without FOR BIT DATA.
Valid. Represent in C as SQLUDF_VARCHAR or char...[n+1]. (Thisis a C
null-terminated string.)

For a VARCHAR(n) parameter, DB2 will put a null in the (k+1) position,
where k is the length of the particular string. The C string-handling
functions are thus well suited for manipulation of these values. For a
RETURNS VARCHAR(n) value or an output parameter of a stored
procedure, the routine body must delimit the actual value with a null
because DB2 will determine the result length from this null character.

Example:
char arg2[51]; /* example for VARCHAR(50) */
char xresult; /* also acceptable */

DATE

Valid. Represent in C same as SQLUDF_DATE or CHAR(10), that is as
char...[11]. The date value is always passed to the routine in ISO format:

yyyy-mm-dd

Example:
char argl[11]; /* example for DATE x/
char *result; /* also acceptable */

Note: For DATE, TIME and TIMESTAMP return values, DB2 demands the
characters be in the defined form, and if this is not the case the value
could be misinterpreted by DB2 (For example, 2001-04-03 will be
interpreted as April 3 even if March 4 is intended) or will cause an
error (SQLCODE -493, SQLSTATE 22007).

TIME

Valid. Represent in C same as SQLUDF_TIME or CHAR(8), that is, as
char...[9]. The time value is always passed to the routine in ISO format:

hh.mm.ss

Programming Server Applications

Example:

char *arg; /* example for DATE */
char result[9]; /* also acceptable */

* TIMESTAMP

Valid. Represent in C as SQLUDF_STAMP or CHAR(26), that is, as char...[27].
The timestamp value is always passed with format:

yyyy-mm-dd-hh.mm.ss.nnnnnn

Example:
char argl[27]; /* example for TIMESTAMP =/
char *result; /* also acceptable */

« GRAPHIC(n)

Valid. Represent in C as SQLUDF_GRAPH or sqldbchar[n+1]. (This is a
null-terminated graphic string). Note that you can use wchar_t[n+1] on
platforms where wchar_t is defined to be 2 bytes in length; however,
sqldbchar is recommended.

For a GRAPHIC(n) parameter, DB2 moves n double-byte characters to the
buffer and sets the following two bytes to null. Data passed from DB2 to a
routine is in DBCS format, and the result passed back is expected to be in
DBCS format. This behavior is the same as using the WCHARTYPE
NOCONVERT precompiler option. For a RETURNS GRAPHIC(n) value or
an output parameter of a stored procedure, DB2 looks for an embedded
GRAPHIC null CHAR, and if it finds it, pads the value out to n with
GRAPHIC blank characters.

When defining graphic routine parameters, consider using VARGRAPHIC
rather than GRAPHIC as DB2 does not promote VARGRAPHIC arguments
to GRAPHIC. For example, suppose you define a routine as follows:

CREATE FUNCTION SIMPLE(GRAPHIC)...

If you invoke the SIMPLE function using VARGRAPHIC data,

(... SIMPLE('graphic_literal')...), you will receive an SQLCODE -440
(SQLSTATE 42884) error indicating that the function was not found, and
end-users of this function might not understand the reason for this
message. In the preceding example, graphic_literal is a literal DBCS
string that is interpreted as VARGRAPHIC data, so you can either cast it to
GRAPHIC or define the parameter as VARGRAPHIC.

Example:
sqldbchar argl[14]; /* example for GRAPHIC(13) x/
sqldbchar =*argl; /* also acceptable */

« VARGRAPHIC(n)

Chapter 4. External Routines 111

112

Valid. Represent in C as SQLUDF_GRAPH or sqldbchar[n+1]. (This is a
null-terminated graphic string). Note that you can use wchar_t[n+1] on
platforms where wchar_t is defined to be 2 bytes in length; however,
sqldbchar is recommended.

For a VARGRAPHIC(n) parameter, DB2 will put a graphic null in the (k+1)
position, where k is the length of the particular occurrence. A graphic null
refers to the situation where all the bytes of the last character of the graphic
string contain binary zeros ('\0's). Data passed from DB2 to a routine is in
DBCS format, and the result passed back is expected to be in DBCS format.
This behavior is the same as using the WCHARTYPE NOCONVERT
precompiler option. For a RETURNS VARGRAPHIC(n) value or an output
parameter of a stored procedure, the routine body must delimit the actual
value with a graphic null, because DB2 will determine the result length
from this graphic null character.

Example:
sqldbchar args[51], /* example for VARGRAPHIC(50) x/
sqldbchar *result, /* also acceptable =/

LONG VARGRAPHIC
Valid. Represent in C as SQLUDF_LONGVARG or a structure:

struct sqludf_vg

{
unsigned short length; /* length of data */

sqldbchar data[1]; /* first char of data */
1

Note that in the preceding structure, you can use wchar_t in place of
sqldbchar on platforms where wchar_t is defined to be 2 bytes in length,
however, the use of sqldbchar is recommended.

The [1] merely indicates an array to the compiler. It does not mean that
only one graphic character is passed. Because the address of the structure is
passed, and not the actual structure, it provides a way to use array logic.

These are not represented as null-terminated graphic strings. The length, in
double-byte characters, is explicitly passed to the routine for parameters
using the structure variable Tength. Data passed from DB2 to a routine is in
DBCS format, and the result passed back is expected to be in DBCS format.
This behavior is the same as using the WCHARTYPE NOCONVERT
precompiler option. For the RETURNS clause or an output parameter of a
stored procedure, the length that is passed to the routine is the length of
the buffer. What the routine body must pass back, using the structure
variable Tength, is the actual length of the data value, in double byte
characters.

Example:

Programming Server Applications

struct sqludf_vg *argl; /* example for VARGRAPHIC(n) */
struct sqludf_vg *result; /* also for LONG VARGRAPHIC =/

¢ BLOB(n) and CLOB(n)
Valid. Represent in C as SQLUDF_BLOB, SQLUDF_CLOB, or a structure:

struct sqludf_Tob

{
sqluint32 length; /% length in bytes =/
char data[1]; /* first byte of lob */
1

The [1] merely indicates an array to the compiler. It does not mean that
only one character is passed; because the address of the structure is passed,
and not the actual structure, it provides a way to use array logic.

These are not represented as C null-terminated strings. The length is
explicitly passed to the routine for parameters using the structure variable
Tength. For the RETURNS clause or an output parameter of a stored
procedure, the length that is passed back to the routine, is the length of the
buffer. What the routine body must pass back, using the structure variable
Tength, is the actual length of the data value.

Example:

struct sqludf_lob *argl; /* example for BLOB(n), CLOB(n) =*/
struct sqludf_lob *result;

* DBCLOB(n)
Valid. Represent in C as SQLUDF_DBCLOB or a structure:

struct sqludf_Tob

{
sqluint32 length; /* length in graphic characters x/

sqldbchar data[1]; /% first byte of lob */
1

Note that in the preceding structure, you can use wchar_t in place of
sqldbchar on platforms where wchar_t is defined to be 2 bytes in length,
however, the use of sqldbchar is recommended.

The [1] merely indicates an array to the compiler. It does not mean that
only one graphic character is passed; because the address of the structure is
passed, and not the actual structure, it provides a way to use array logic.

These are not represented as null-terminated graphic strings. The length is
explicitly passed to the routine for parameters using the structure variable
Tength. Data passed from DB2 to a routine is in DBCS format, and the
result passed back is expected to be in DBCS format. This behavior is the
same as using the WCHARTYPE NOCONVERT precompiler option. For the
RETURNS clause or an output parameter of a stored procedure, the length

Chapter 4. External Routines 113

114

that is passed to the routine is the length of the buffer. What the routine
body must pass back, using the structure variable Tength, is the actual
length of the data value, with all of these lengths expressed in double byte
characters.

Example:

struct sqludf_lob *argl; /* example for DBCLOB(n) =*/
struct sqludf_lob *result;

Distinct Types

Valid or invalid depending on the base type. Distinct types will be passed
to the UDF in the format of the base type of the UDT, so may be specified
if and only if the base type is valid.

Example:
struct sqludf_Tob *argl; /* for distinct type based on BLOB(n) */
double xarg2; /* for distinct type based on DOUBLE =/
char res[5]; /* for distinct type based on CHAR(4) =*/

Distinct Types AS LOCATOR, or any LOB type AS LOCATOR

Valid for parameters and results of UDFs and methods. It may only be
used to modify LOB types or any distinct type that is based on a LOB type.
Represent in C as SQLUDF_LOCATOR or a four byte integer.

The locator value can be assigned to any locator host variable with a
compatible type and then be used in an SQL statement. This means that
locator variables are only useful in UDFs and methods defined with an SQL
access indicator of CONTAINS SQL or higher. For compatibility with
existing UDFs and methods, the locator APIs are still supported for NOT
FENCED NO SQL UDFs. Use of these APIs is not encouraged for new
functions.

Example:
sqludf_locator *xargl; /* locator argument =*/
sqludf_locator «result; /* locator result =/

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB LOCATOR arg_Toc;
SQL TYPE IS CLOB LOCATOR res_Tloc;
EXEC SQL END DECLARE SECTION;

/* Extract some characters from the middle */

/* of the argument and return them */

xarg loc = argl;

EXEC SQL VALUES SUBSTR(arg_loc, 10, 20) INTO :res_loc;
*result = res_loc;

Structured Types

Valid for parameters and results of UDFs and methods where an
appropriate transform function exists. Structured type parameters will be
passed to the function or method in the result type of the FROM SQL

Programming Server Applications

transform function. Structured type results will be passed in the parameter
type of the TO SQL transform function.

* DATALINK

Valid. Represent in C as SQLUDF_DATALINK or a structure similar to the
following from the sqludf.h include file:

struct sqludf_datalink {
sqluint32 version;
char linktype[4];
sqluint32 url_Tlength;
sqluint32 comment_length;
char reserve2[8];
char url_plus_comment[230];

}

Related concepts:

* ['Transform Functions and Transform Groups” on page 246|
* ['Graphic Host Variables in C/C++ Routines” on pam
* [“Include File for C/C++ Routines (sqludf.h)” on page 102|
* ["C/C++ Routines” on page 97|

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2
¢ “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “Supported SQL Data Types in C and C++" in the Application Development
Guide: Programming Client Applications

* [“Supported SQL Data Types in C/C++" on page 103|

Graphic Host Variables in C/C++ Routines

Any routine written in C or C++ that receives or returns graphic data through
its parameter input or output should generally be precompiled with the
WCHARTYPE NOCONVERT option. This is because graphic data passed
through these parameters is considered to be in DBCS format, rather than the
wchar_t process code format. Using NOCONVERT means that graphic data
manipulated in SQL statements in the routine will also be in DBCS format,
matching the format of the parameter data.

With WCHARTYPE NOCONVERT, no character code conversion occurs
between the graphic host variable and the database manager. The data in a
graphic host variable is sent to, and received from, the database manager as
unaltered DBCS characters. If you do not use WCHARTYPE NOCONVERT, it
is still possible for you to manipulate graphic data in wchar_t format in a
routine; however, you must perform the input and output conversions
manually.

Chapter 4. External Routines 115

CONVERT can be used in FENCED routines, and it will affect the graphic
data in SQL statements within the routine, but not data passed through the
routine’s parameters. NOT FENCED routines must be built using the
NOCONVERT option.

In summary, graphic data passed to or returned from a routine through its
input or output parameters is in DBCS format, regardless of how it was
precompiled with the WCHARTYPE option.

Related concepts:

* “WCHARTYPE Precompiler Option in C and C++" in the Application
Development Guide: Programming Client Applications

* “WCHARTYPE CONVERT Precompile Option” in the Application
Development Guide: Building and Running Applications

Related reference:
* “PRECOMPILE Command” in the Command Reference

C++ Type Decoration

The names of C++ functions can be overloaded. Two C++ functions with the
same name can coexist if they have different arguments, for example:

int func(int 1)

and
int func(char c)

C++ compilers type-decorate or ‘mangle’ function names by default. This
means that argument type names are appended to their function names to
resolve them, as in func__Fi and func__Fc for the two earlier examples. The
mangled names will be different on each platform, so code that explicitly uses
a mangled name is not portable.

On Windows® operating systems, the type-decorated function name can be
determined from the .obj (object) file.

With the Microsoft® Visual C++ compiler on Windows, you can use the

dumpbin command to determine the type-decorated function name from the
.obj (object) file, as follows:

dumpbin /symbols myprog.obj
where myprog.obj is your program object file.

On UNIX® platforms, the type-decorated function name can be determined
from the .o (object) file, or from the shared library, using the nm command.

116 Programming Server Applications

This command can produce considerable output, so it is suggested that you
pipe the output through grep to look for the right line, as follows:

nm myprog.o | grep myfunc

where myprog.o is your program object file, and myfunc is the function in the
program source file.

The output produced by all of these commands includes a line with the
mangled function name. On UNIX, for example, this line is similar to the
following:

myfunc__ FP1TIPST3PcN35| 3792 |unamex | | ...

Once you have obtained the mangled function name from one of the
preceding commands, you can use it in the appropriate command. This is
demonstrated later in this section using the mangled function name obtained
from the preceding UNIX example. A mangled function name obtained on
Windows would be used in the same way.

When registering a routine with the CREATE statement, the EXTERNAL
NAME clause must specify the mangled function name. For example:

CREATE FUNCTION myfunco(...) RETURNS...

EXTERNAL NAME '/whatever/path/myprog!myfunc_ FP1T1PsT3PcN35'

If your routine library does not contain overloaded C++ function names, you
have the option of using extern "C" to force the compiler to not type-decorate
function names. (Note that you can always overload the SQL function names
given to UDFs, because DB2® resolves what library function to invoke based
on the name and the parameters it takes.)

Chapter 4. External Routines 117

#include <string.h>
#include <stdlib.h>
#include "sqludf.h"

ey */
/* function fold: output = input string is folded at point indicated =*/
/* by the second argument. */
/* inputs: CLOB, input string */
/* LONG position to fold on */
/* output: CLOB folded string */
S S Sy S S S RS S —— */
extern "C" void fold(

SQLUDF_CLOB *inl, /* input CLOB to fold */

}
/* end of UDF: fold =/

S */
/* function find_vowel: */
/* returns the position of the first vowel. */
/* returns error if no vowel. */
/* defined as NOT NULL CALL */
/* inputs: VARCHAR(500) */
/* output: INTEGER */
2 */
extern "C" void findvwl(

SQLUDF_VARCHAR *in, /* input smallint */

}
/* end of UDF: findvwl =/

In this example, the UDFs fold and findvwl are not type-decorated by the
compiler, and should be registered in the CREATE FUNCTION statement
using their plain names. Similarly, if a C++ stored procedure or method is
coded with extern "C", its undecorated function name would be used in the
CREATE statement.

Related concepts:

* ['C/C++ Routines” on page 97|

Java Routines

The following sections describe how to write Java routines.

Java Routines

When developing routines in Java, it is strongly recommended that you
register them using the PARAMETER STYLE JAVA clause in the CREATE

118 Programming Server Applications

statement. With PARAMETER STYLE JAVA, a routine will use a parameter
passing convention that conforms to the Java" language and SQLj Routines
specification.

There are some UDF and method features that cannot be implemented with
PARAMETER STYLE JAVA. These are as follows:

* table functions
* scratchpads
* access to the DBINFO structure

* the ability to make a FINAL CALL (and a separate first call) to the function
or method

If you need to implement the above features in a UDF or method you can
either write your routine in C, or write it in Java, using PARAMETER STYLE
DB2GENERAL. Aside from these specific cases, all mentions of Java routines
in this documentation will assume the use of PARAMETER STYLE JAVA.

Java UDFs and methods:

The signature of PARAMETER STYLE JAVA UDFs and methods follows this
format:

public static return-type method-name (SQL-arguments) throws SQLException

return-type
The data type of the value to be returned by the scalar routine. Inside
the routine, the return value is passed back to the invoker through a
return statement.

method-name
Name of the method. During routine registration, this value is
specified with the class name in the EXTERNAL NAME clause of the
routine’s CREATE statement.

SQL-arguments
Corresponds to the list of input parameters in the routine’s CREATE
statement.

The following is an example of a Java UDF that returns the product of its two
input arguments:

public static double product(double inl, double in2) throws SQLException
{

return inl * in2;

}

The corresponding CREATE FUNCTION statement for this UDF is as follows:

Chapter 4. External Routines 119

120

CREATE FUNCTION product(double inl, double in2)
RETURNS double
LANGUAGE java
PARAMETER STYLE java
NO SQL
FENCED THREADSAFE
DETERMINISTIC
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION
EXTERNAL NAME 'myjar:udfclass.product'

The preceding statement assumes that the method is in a class called udfclass
which lives in a JAR file that has been cataloged to the database with the Jar
ID myjar

Java stored procedures:

The signature of PARAMETER STYLE JAVA stored procedures follows this
format:

public static void method-name (SQL-arguments, ResultSet[] result-set-array)
throws SQLException

method-name
Name of the method. During routine registration, this value is
specified with the class name in the EXTERNAL NAME clause of the
CREATE PROCEDURE statement.

SQL-arguments
Corresponds to the list of input parameters in the CREATE
PROCEDURE statement. OUT or INOUT mode parameters are passed
as single-element arrays. For each result set that is specified in the
DYNAMIC RESULT SETS clause of the CREATE PROCEDURE
statement, a single-element array of type ResultSet is appended to the
parameter list.

result-set-array
Name of the array of ResultSet objects. For every result set declared in
the DYNAMIC RESULT SETS parameter of the CREATE
PROCEDURE statement, a parameter of type ResultSet[] must be
declared in the Java method signature.

The following is an example of a Java stored procedure that accepts an input
parameter, and then returns an output parameter and a result set:

public static void javastp(int inparm, int[] outparm, ResultSet[] rs)
throws SQLException
{

Connection con = DriverManager.getConnection("jdbc:default:connection");
PreparedStatement stmt = null;
String sql = SELECT value FROM tableOl WHERE index = ?";

Programming Server Applications

//Prepare the query with the value of index
stmt = con.prepareStatement(sql);
stmt.setInt(1, inparm);

//Execute query and set output parm
rs[0] = stmt.executeQuery();
outparm[@] = inparm + 1;

//Close open resources
if (stmt != null) stmt.close();
if (con != null) con.close();

return;

}

The corresponding CREATE PROCEDURE statement for this stored procedure
is as follows:
CREATE PROCEDURE javaproc(IN inl INT, OUT outl INT)

LANGUAGE java

PARAMETER STYLE java

DYNAMIC RESULT SETS 1

FENCED THREADSAFE

EXTERNAL NAME 'myjar:stpclass.javastp'

The preceding statement assumes that the method is in a class called
stpclass, which exists in a JAR file that has been cataloged to the database
with the Jar ID myjar

Notes:

1. PARAMETER STYLE JAVA routines use exceptions to pass error data back
to the invoker. For complete information, including the exception call
stack, refer to db2diag.log. Other than this detail, there are no other special
considerations for invoking PARAMETER STYLE JAVA routines.

2.]NI calls are not supported in Java routines. However, it is possible to
invoke C functionality from Java routines by nesting an invocation of a C
routine. This involves moving the desired C functionality into a routine,
registering it, and invoking it from within the Java routine.

Related concepts:
+ ["'DB2GENERAL Routines” on page 303
* [‘Table Function Execution Model for Java” on page 57

Related tasks:
¢ ['Debugging Stored Procedures in Java” on page 125|

* “Building JDBC Routines” in the Application Development Guide: Building and
Running Applications

* “Building SQL]J Routines” in the Application Development Guide: Building and
Running Applications

Chapter 4. External Routines 121

122

Related reference:

“CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
“CREATE METHOD statement” in the SQL Reference, Volume 2

“CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

‘Supported SQL Data Types in Java” on page 123|

‘JAR File Administration on the Database Server” on page 122

“JDBC Samples” in the Application Development Guide: Building and Running
Applications
“SQLJ Samples” in the Application Development Guide: Building and Running
Applications

“CREATE PROCEDURE (External) statement” in the SQL Reference, Volume
2

Related samples:

“SpServerjava -- Provide a variety of types of stored procedures to be
called from (JDBC)”

“UDFjsrvjava -- Provide UDFs to be called by UDFjcli.java (JDBC)”
“UDFsqlsv.java -- Provide UDFs to be called by UDFsqlcl.java (JDBC)”
“UDFsrv.java -- Provide UDFs to be called by UDFcli.java (JDBC)”

“SpServer.sqlj -- Provide a variety of types of stored procedures to be called
from (SQLj)”

“UDFjsrvjava -- Provide UDFs to be called by UDFjcli.sqlj (SQL;j)”
“UDFsrv.java -- Provide UDFs to be called by UDFcli.sqlj (SQLj)”

JAR File Administration on the Database Server

The Java class files that you use to implement a routine must reside in either

a JAR file you have installed in the database, or in the correct CLASSPATH
for your operating system. The DB2 classloader searches the classes and JAR
files in the CLASSPATH and will pick up the first class it encounters with the
specified name.

To install, replace, or remove a JAR file in a DB2 instance, use the stored
procedures provided with DB2:

Install

sqlj.install_jar(jar-url, jar-id)

Replace

sqlj.replace_jar(jar-url, jar-id)

Remove

sqlj.remove_jar(jar-id)

Programming Server Applications

e jar-url: Specifies the URL containing the JAR file to be installed or replaced.
The only URL scheme supported is file:’.

e jar-id: A unique string identifier, up to 128 bytes in length. It specifies the
JAR identifier in the database associated with the jar-ur! file.

Note: When invoked from applications, the stored procedures sqlj.install_jar
and sqlj.remove_jar have an additional parameter. It is an integer value
that dictates the use of the deployment descriptor in the specified JAR
file. At present, the deployment parameter is not supported, and any
invocation specifying a nonzero value will be rejected.

Following are a series of examples of how to use the preceding JAR file
management stored procedures.

To register a JAR located in the path /home/bob/bobsjar.jar with the database
instance as MYJAR:

CALL sqlj.install_jar('file:/home/bob/bobsjar.jar', 'MYJAR')

Subsequent SQL commands that use the bobsjar. jar file refer to it with the
name MYJAR.

To replace MYJAR with a different JAR containing some updated classes:
CALL sqlj.replace_jar('file:/home/bob/bobsnewjar.jar', 'MYJAR')

To remove MYJAR from the database catalogs:
CALL sqlj.remove_jar('MYJAR')

Note: On Windows operating systems, DB2 stores JAR files in the path
specified by the DB2INSTPROF instance-specific registry setting. To
make JAR files unique for an instance, you must specify a unique value
for DB2INSTPROF for that instance.

Related concepts:

* “Where to Put Java Classes” in the Application Development Guide:
Programming Client Applications

* ['Java Routines” on page 118|

* ["Library and Class Management Considerations for Developing Routines”|
on page 23|

Supported SQL Data Types in Java

The following table shows the Java equivalent of each SQL data type, based
on the JDBC specification for data type mappings. The JDBC driver converts
the data exchanged between the application and the database using the

Chapter 4. External Routines 123

following mapping schema. Use these mappings in your Java applications and
your PARAMETER STYLE JAVA procedures and UDFs.

Note: There is no host variable support for the DATALINK data type in any

Table 5. SQL Data Types Mapped to Java Declarations

of the programming languages supported by DB2.

SQL Column Type

Java Data Type

SQL Column Type Description

SMALLINT short 16-bit, signed integer

(500 or 501)

INTEGER int 32-bit, signed integer

(496 or 497)

BIGINT long 64-bit, signed integer

(492 or 493)

REAL float Single precision floating point

(480 or 481)

DOUBLE double Double precision floating point

(480 or 481)

DECIMAL(p,s) java.math.BigDecimal Packed decimal

(484 or 485)

CHAR(n) java.lang.String Fixed-length character string of length n
(452 or 453) where 1 is from 1 to 254

CHAR(n) byte[] Fixed-length character string of length n
FOR BIT DATA where # is from 1 to 254

VARCHAR(n) java.lang.String Variable-length character string

(448 or 449)

VARCHAR(n) byte[] Variable-length character string

FOR BIT DATA

LONG VARCHAR
(456 or 457)

java.lang.String

Long variable-length character string

LONG VARCHAR byte[] Long variable-length character string

FOR BIT DATA

BLOB(n) java.sql.Blob Large object variable-length binary string
(404 or 405)

CLOB(n) java.sql.Clob Large object variable-length character string
(408 or 409)

DBCLOB(1n) java.sql.Clob Large object variable-length double-byte
(412 or 413) character string

DATE java.sql.Date 10-byte character string

(384 or 385)

124 Programming Server Applications

Table 5. SQL Data Types Mapped to Java Declarations (continued)

SQL Column Type Java Data Type SQL Column Type Description
TIME java.sql.Time 8-byte character string

(388 or 389)

TIMESTAMP java.sql.Timestamp 26-byte character string

(392 or 393)

Debugging Stored Procedures in Java
The following sections describe how to debug Java stored procedures.

Debugging Stored Procedures in Java

DB2 provides the capability to interactively debug a stored procedure written
in JDBC when it executes on an AIX, Linux, Solaris, Windows NT, or
Windows 2000 server. The easiest way to invoke debugging is through the
DB2 Development Center.

Procedure:

To debug stored procedures in Java:
1. Prepare to debug.

2. Populate the debug table.

3. Invoke the debugger.

Related tasks:
* [‘Preparing to Debug Java Stored Procedures” on page 125

* [‘Populating the Debug Table” on page 127]

» [“Invoking the Debug Program” on page 12§|

* ['Debugging Routines” on page 31|

* “Debugging : Development Center help” in the Help: Development Center

Preparing to Debug Java Stored Procedures

When preparing to interactively debug a Java stored procedure, you work
with the stored procedure, the client, and the server.

Procedure:

To prepare to debug Java stored procedures:

1. Compile the stored procedure in debug mode according to your JDK
documentation.

2. Prepare the server.

Chapter 4. External Routines 125

126

a. If the source code is on the server, set the CLASSPATH environment
variable to include the Java source code directory or store the source
code in the function directory, as described in the JAR File
Administration on the Database Server topic.

b. Enter the db2set command to enable debugging for your instance:

db2set DB2ROUTINE_DEBUG=ON
3. Set the client environment variables.

If the source code is stored on the client, set the DB2_DBG_PATH

environment variable to the directory that contains the source code for the

stored procedure.
4. Create the debug table.

If you do not use the Development Center to invoke the debug program,
create the debug table with the following command:

db2 -tf sqllib/misc/db2debug.ddl

Note: In partitioned database environments, the default database partition
group is IBMDEFAULTGROUP for the USERSPACEL table space,
and it spans all the database partitions. To improve the performance
of debugging stored procedures in a partitioned database
environment, you should have a single coordinator partition where
debugging will occur, and define a database partition group that
only contains that database partition.

5. Start the debug program on the client.

From the stored procedure client, start the debug program with the
following command:

db2dbugd -gport=portno

where portno is an unused TCP/IP port number. If you do not supply a
value, the debug program uses 8000 as the default port number. On
Windows operating systems, you can also click the debug program
shortcut located in the DB2 folder to start the debug program with the
default port number.

You are now ready to populate the debug table.

Related concepts:

* “Where to Put Java Classes” in the Application Development Guide:
Programming Client Applications

Related tasks:
* ['Populating the Debug Table” on page 127

* ['Invoking the Debug Program” on page 128|

* "'Debugging Routines” on page 31|

Programming Server Applications

Related reference:
* [‘Java Debug Table DB2DBG.ROUTINE_DEBUG” on page 128|
* [‘JAR File Administration on the Database Server” on page 122

Populating the Debug Table

The debug table contains information about the stored procedures you debug
and the client/server environment that you debug in. Only DBAs or users
with INSERT, UPDATE, or DELETE privilege on the table can manipulate
values directly in the base table DB2DBG.ROUTINE_DEBUG. However, unless
the DBA has added further restrictions, anyone can add, update, or delete
rows through the user view, DB2DBG.ROUTINE_DEBUG_USER. The rest of
this section assumes that you are populating that table through the user view.

Procedure:

If you use the Development Center to invoke debugging, you can use the
debug program to populate and manage the debug table. Otherwise, to enable
debugging support for a given stored procedure, issue the following
command from the CLP:

DB2 INSERT INTO db2dbg.routine_debug user (AUTHID, TYPE,

ROUTINE_SCHEMA, SPECIFICNAME, DEBUG_ON, CLIENT_IPADDR)
VALUES ('authid', 'S', 'schema', 'proc_name', 'Y', 'IP_num')

where:

authid The user name used for debugging the stored procedure, that is, the
user name used to connect to the database.

schema The schema name for the stored procedure.

proc_name
The specific name of the stored procedure. This is the specific name
that was provided on the CREATE PROCEDURE command or a
system-generated identifier, if no specific name has been provided.

IP_num
The IP address in the form nnn.nnn.nnn.nnn of the client used to
debug the stored procedure.

For example, to enable debugging for the stored procedure MySchema.myProc
by the user USER1 with the debugging client located at the IP address
192.168.111.222, type the following command:

DB2 INSERT INTO db2dbg.routine_debug_user (AUTHID, TYPE,

ROUTINE_SCHEMA, SPECIFICNAME, DEBUG_ON, CLIENT_IPADDR)
VALUES ('USER1', 'S', 'MySchema', 'myProc', 'Y', '192.168.111.222")

Chapter 4. External Routines 127

128

If you drop a stored procedure, its debug information is not automatically
deleted from the debug table. Debug information for non-existent stored
procedures cannot harm your database or instance. However, old debug
information can cause some confusion if a stored procedure is recreated. If
you want to keep the debug table synchronized with the DB2 catalog, you
must delete the debug information manually.

You are now ready to invoke the debug program.

Related tasks:
* ["Preparing to Debug Java Stored Procedures” on page 125

* ['Invoking the Debug Program” on page 128|

* 'Debugging Routines” on page 31|

Related reference:
+ ["Java Debug Table DB2DBG.ROUTINE_DEBUG” on page 12§

Invoking the Debug Program

In the debug program, you can step through the source code, display
variables, and set breakpoints in the source code.

Procedure:

After you have prepared to debug and populated the debug table, call the
stored procedure that you want to debug. This action invokes the debug
program on the client using the IP address that you specified in the debug
table.

Related tasks:
* [‘Preparing to Debug Java Stored Procedures” on page 125

s ["Populating the Debug Table” on page 127|

* ["'Debugging Routines” on page 31|

* “Debugging : Development Center help” in the Help: Development Center

Related reference:
* [‘Java Debug Table DB2DBG.ROUTINE_DEBUG” on page 128|

Java Debug Table DB2DBG.ROUTINE_DEBUG

Whether you create the debug table manually or through the Development
Center, the debug table is named DB2DBG.ROUTINE_DEBUG and has the
following definition:

Programming Server Applications

Table 6. DB2DBG.ROUTINE_DEBUG Table Definition

Column Name Data Type Attributes Description
AUTHID VARCHAR(128) NOT NULL, The application authid under which the
DEFAULT USER debugging for this stored procedure is to
be performed. This is the user ID that
was provided on connect to the database.
TYPE CHAR(1) NOT NULL Valid values: 'S” (Procedure)
ROUTINE_SCHEMA VARCHAR(128) NOT NULL Schema name of the stored procedure to
be debugged.
SPECIFICNAME VARCHAR(18) NOT NULL Specific name of the stored procedure to
be debugged.
DEBUG_ON CHAR(1) NOT NULL, Valid values:
DEFAULT 'N" . y . enables debugging for the stored
procedure.
* N - disables debugging for the stored
procedure. This is the default.
CLIENT_IPADDR VARCHAR(15) NOT NULL The IP address of the client that does the
debugging of the form nnn.nnn.nnn.nnn
CLIENT_PORT INTEGER NOT NULL, The port of the debugging
DEFAULT 8000 communication. The default is 8000.
DEBUG_STARTN INTEGER NOT NULL Not used.
DEBUG_STOPN INTEGER NOT NULL Not used.

The primary key of this table is AUTHID, TYPE, ROUTINE_SCHEMA, SPECIFICNAME.

The DB2DBG.ROUTINE_DEBUG_USER view limits the access to this table
only to rows belonging to the user connected to the database.

Related tasks:

* ['Debugging Stored Procedures in Java” on page 125|

.| ‘Preparing to Debug Java Stored Procedures” on page 125

| ’PoEulating the Debug Table” on page 127
‘ ‘Invoking the Debug Program” on page 12§|

+ [‘Debugging Routines” on page 31

OLE Automation Routines

The following sections describe how to write OLE automation routines.

Chapter 4. External Routines 129

130

OLE Automation Routine Design

Object Linking and Embedding (OLE) automation is part of the OLE 2.0
architecture from Microsoft® Corporation. With OLE automation, your
applications, regardless of the language in which they are written, can expose
their properties and methods in OLE automation objects. Other applications,
such as Lotus® Notes or Microsoft Exchange, can then integrate these objects
by taking advantage of these properties and methods through OLE
automation.

The applications exposing the properties and methods are called OLE
automation servers or objects, and the applications that access those properties
and methods are called OLE automation controllers. OLE automation servers
are COM components (objects) that implement the OLE IDispatch interface.
An OLE automation controller is a COM client that communicates with the
automation server through its IDispatch interface. COM is the foundation of
OLE. For OLE automation routines, DB2® acts as an OLE automation
controller. Through this mechanism, DB2 can invoke methods of OLE
automation objects as external routines.

Note that all OLE automation topics assume that you are familiar with OLE
automation terms and concepts. For an overview of OLE automation, refer to
Microsoft Corporation: The Component Object Model Specification, October 1995.
For details on OLE automation, refer to OLE Automation Programmer’s
Reference, Microsoft Press, 1996, ISBN 1-55615-851-3.

Related concepts:

+ ["Object Instance and Scratchpad Considerations and OLE Routines” on|

page 132|

* ["OLE Automation Routines in BASIC and C++” on page 134|

Related tasks:
* [‘Creating and Registering OLE Automation Routines” on page 13()

Related reference:
* ["Supported SQL Data Types in OLE Automation” on page 133

Creating and Registering OLE Automation Routines

OLE automation routines are implemented as public methods of OLE
automation objects. The OLE automation objects must be externally creatable
by an OLE automation controller, in this case DB2, and support late binding
(also called IDispatch-based binding). OLE automation objects must be
registered in the Windows registry with a class identifier (CLSID), and
optionally, an OLE programmatic ID (progID) to identify the automation

Programming Server Applications

object. The progID can identify an in-process (.DLL) or local (.(EXE) OLE
automation server, or a remote server through DCOM (Distributed COM).

Procedure:
To register OLE automation routines:

After you code an OLE automation object, you need to register the methods
of the object as routines using the CREATE statement. Registering OLE
automation routines is very similar to registering C or C++ routines, but you
must use the following options:

* LANGUAGE OLE

* FENCED NOT THREADSAFE, since OLE automation routines must run in
FENCED mode, but cannot be run as THREADSAFE.

The external name consists of the OLE progID identifying the OLE
automation object and the method name separated by ! (exclamation mark):

CREATE FUNCTION bcounter () RETURNS INTEGER
EXTERNAL NAME 'bert.bcounter!increment'
LANGUAGE OLE
FENCED
NOT THREADSAFE
SCRATCHPAD
FINAL CALL
NOT DETERMINISTIC
NULL CALL
PARAMETER STYLE DB2SQL
NO SQL
NO EXTERNAL ACTION
DISALLOW PARALLEL;

The calling conventions for OLE method implementations are identical to the
conventions for routines written in C or C++. An implementation of the
previous method in the BASIC language looks like the following (notice that
in BASIC the parameters are by default defined as call by reference):
Public Sub increment(output As Long, _

indicator As Integer, _

sqlstate As String, _

fname As String, _

fspecname As String, _

sqlmsg As String, _

scratchpad() As Byte, _

calltype As Long)

Related concepts:

* “Object Linking and Embedding (OLE) Automation with Visual Basic” in
the Application Development Guide: Building and Running Applications

Chapter 4. External Routines 131

132

* “Object Linking and Embedding (OLE) Automation with Visual C++” in the
Application Development Guide: Building and Running Applications

* I"OLE Automation Routine Design” on page 130

* ["Object Instance and Scratchpad Considerations and OLE Routines” on|
age 132

* I"OLE Automation Routines in BASIC and C++" on page 134|

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

* “CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

* “Object Linking and Embedding (OLE) Samples” in the Application
Development Guide: Building and Running Applications

* “CREATE PROCEDURE (External) statement” in the SQL Reference, Volume
2

* ["Supported SQL Data Types in OLE Automation” on page 133|

Object Instance and Scratchpad Considerations and OLE Routines

OLE automation UDFs and methods (methods of OLE automation objects) are
applied on instances of OLE automation objects. DB2® creates an object
instance for each UDF or method reference in an SQL statement. An object
instance can be reused for subsequent method invocations of the UDF or
method reference in an SQL statement, or the instance can be released after
the method invocation and a new instance is created for each subsequent
method invocation. The proper behavior can be specified with the
SCRATCHPAD option in the CREATE statement. For the LANGUAGE OLE
clause, the SCRATCHPAD option has the additional semantic compared to C
or C++, that a single object instance is created and reused for the entire query,
whereas if NO SCRATCHPAD is specified, a new object instance may be
created each time a method is invoked.

Using the scratchpad allows a method to maintain state information in
instance variables of the object, across function or method invocations. It also
increases performance as an object instance is only created once and then
reused for subsequent invocations.

Related concepts:

* I"OLE Automation Routine Design” on page 130
+ I"OLE Automation Routines in BASIC and C++" on page 134|

Related tasks:
* ['Creating and Registering OLE Automation Routines” on page 13(]

Programming Server Applications

Related reference:
“CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
“CREATE FUNCTION (External Scalar) statement” in the SQL Reference,

Volume 2

“CREATE PROCEDURE (External) statement” in the SQL Reference, Volume

2

. I"Supported SQL Data Types in OLE Automation” on page 133|

Supported SQL Data Types in OLE Automation

DB2 handles type conversion between SQL types and OLE automation types.
The following table summarizes the supported data types and how they are
mapped.

Table 7. Mapping of SQL and OLE Automation Datatypes

SQL Type OLE Automation Type OLE Automation Type
Description

SMALLINT short 16-bit signed integer

INTEGER long 32-bit signed integer

REAL float 32-bit IEEE floating-point
number

FLOAT or DOUBLE double 64-bit IEEE floating-point
number

DATE DATE 64-bit floating-point fractional
number of days since December

TIME DATE 30, 1899

TIMESTAMP DATE

CHAR(n) BSTR Length-prefixed string as

VARCHAR() BSTR descrlbefi in the OLE ,
Automation Programmer’s

LONG VARCHAR BSTR Reference.

CLOB(n) BSTR

GRAPHIC(n) BSTR Length-prefixed string as

VARGRAPHIC(n) BSTR described in the OLE
Automation Programmer’s

LONG GRAPHIC BSTR Reference.

DBCLOB() BSTR

Chapter 4. External Routines 133

Table 7. Mapping of SQL and OLE Automation Datatypes (continued)

VARCHAR(n) FOR BIT DATA SAFEARRAY[unsigned char]

SQL Type OLE Automation Type OLE Automation Type
Description
CHAR(n) SAFEARRAY[unsigned char] 1-dim Byte() array of 8-bit
. unsigned data items.

VARCHAR(n) SAFEARRAY[unsigned char] (SAFEARRAYS are described in
LONG VARCHAR SAFEARRAY[unsigned char] the OLE Automation
CHAR(1) FOR BIT DATA SAFEARRAY[unsigned char] Programmer’s Reference.)

[

[

LONG VARCHAR FOR BIT SAFEARRAY[unsigned char]

DATA

BLOB(n)

SAFEARRAY[unsigned char]

Data passed between DB2 and OLE automation routines is passed as call by
reference. SQL types such as BIGINT, DECIMAL, DATALINK, or LOCATORS,
or OLE automation types such as Boolean or CURRENCY that are not listed
in the table are not supported. Character and graphic data mapped to BSTR is
converted from the database code page to the UCS-2 scheme. (UCS-2 is also
known as Unicode, IBM code page 13488). Upon return, the data is converted
back to the database code page from UCS-2. These conversions occur
regardless of the database code page. If these code page conversion tables are
not installed, you receive SQLCODE -332 (SQLSTATE 57017).

Related concepts:

* ["OLE Automation Routine Design” on page 130

* [’Object Instance and Scratchpad Considerations and OLE Routines” on|
age 132|

* "OLE Automation Routines in BASIC and C++” on page 134

Related tasks:
* ['Creating and Registering OLE Automation Routines” on page 13(]

OLE Automation Routines in BASIC and C++

You can implement OLE automation routines in any language. This section
shows you how to implement OLE automation routines using BASIC or C++
as two sample languages. The following table shows the mapping of OLE
automation types to data types in BASIC and C++.

134 Programming Server Applications

Table 8. Mapping of SQL and OLE Data Types to BASIC and C++ Data Types

SQL Type OLE Automation Type BASIC C++ Type
Type

SMALLINT short Integer short

INTEGER long Long long

REAL float Single float

FLOAT or DOUBLE double Double double

DATE, TIME, TIMESTAMP DATE Date DATE

CHAR(n) BSTR String BSTR

CHAR(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

VARCHAR(n) BSTR String BSTR

VARCHAR(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

LONG VARCHAR BSTR String BSTR

LONG VARCHAR FOR BIT SAFEARRAY[unsigned char] Byte() SAFEARRAY

DATA

BLOB(n) BSTR String BSTR

BLOB(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

GRAPHIC(n), VARGRAPHIC(n), BSTR String BSTR

LONG GRAPHIC, DBCLOB(n)

OLE Automation in BASIC:

To implement OLE automation routines in BASIC you need to use the BASIC
data types corresponding to the SQL data types mapped to OLE automation

types.

The BASIC declaration of the OLE automation UDF, bcounter, looks like the

following;:

Public Sub increment(output As Long, _

indicator As Integer, _

sqlstate As String, _
fname As String, _

fspecname As String, _

sqlmsg As String, _

scratchpad() As Byte, _

calltype As Long)

OLE Automation in C++:

The C++ declaration of the OLE automation UDF, increment, is as follows:

Chapter 4. External Routines

135

136

STDMETHODIMP Ccounter::increment (long =*output,
short =*indicator,
BSTR =*sqlstate,
BSTR *fname,
BSTR *fspecname,
BSTR *sqlmsg,
SAFEARRAY =**scratchpad,
long =*calltype);

OLE supports type libraries that describe the properties and methods of OLE
automation objects. Exposed objects, properties, and methods are described in
the Object Description Language (ODL). The ODL description of the above
C++ method is as follows:

HRESULT increment ([out] Tong +*output,

[out] short *indicator,
[out] BSTR =*sqlstate,
[in] BSTR *fname,
[in] BSTR *fspecname,

[out] BSTR +*sqlmsg,
[in,out] SAFEARRAY (unsigned char) =*scratchpad,
[in] Tong *calltype);

The ODL description allows you to specify whether a parameter is an input
(in), output (out), or input/output (in,out) parameter. For an OLE automation
routine, the routine input parameters and input indicators are specified as [in]
parameters, and routine output parameters and output indicators as [out]
parameters. For the routine trailing arguments, sqlstate is an [out] parameter,
fname and fspecname are [in] parameters, scratchpad is an [in,out] parameter,
and calltype is an [in] parameter.

OLE automation defines the BSTR data type to handle strings. BSTR is
defined as a pointer to OLECHAR: typedef OLECHAR *BSTR. For allocating and
freeing BSTRs, OLE imposes the rule that the called routine frees a BSTR
passed in as a by-reference parameter before assigning the parameter a new
value. The same rule applies for one-dimensional byte arrays that are received
by the called routine as SAFEARRAY**. This rule means the following for DB2®
and OLE automation routines:

* [in] parameters: DB2 allocates and frees [in] parameters.

* [out] parameters: DB2 passes in a pointer to NULL. The [out] parameter
must be allocated by the invoked routine and is freed by DB2.

* [in,out] parameters: DB2 initially allocates [in,out] parameters. They can be
freed and re-allocated by the invoked routine. As is true for [out]
parameters, DB2 frees the final returned parameter.

All other parameters are passed as pointers. DB2 allocates and manages the
referenced memory:.

Programming Server Applications

OLE automation provides a set of data manipulation functions for dealing
with BSTRs and SAFEARRAYs. The data manipulation functions are described
in the OLE Automation Programmer’s Reference.

The following C++ routine returns the first 5 characters of a CLOB input
parameter:

// UDF DDL: CREATE FUNCTION crunch (clob(5k)) RETURNS char(5)

STDMETHODIMP Cobj::crunch (BSTR =*in, // CLOB(5K)
BSTR =out, // CHAR(5)
short *indicatorl, // input indicator
short *indicator2, // output indicator
BSTR *sqlstate, // pointer to NULL

BSTR *fname, // pointer to function name
BSTR *fspecname, // pointer to specific name
BSTR *msgtext) // pointer to NULL

// Allocate BSTR of 5 characters
// and copy 5 characters of input parameter

// out is an [out] parameter of type BSTR, that is,
// it is a pointer to NULL and the memory does not have to be freed.
// DB2 will free the allocated BSTR.

*xout = SysAllocStringlLen (*in, 5);
return NOERROR;
}s

An OLE automation server can be implemented as creatable single-use or
creatable multi-use. With creatable single-use, each client (that is, a DB2
FENCED process) connecting with CoGetClassObject to an OLE automation
object will use its own instance of a class factory, and run a new copy of the
OLE automation server if necessary. With creatable multi-use, many clients
connect to the same class factory. That is, each instantiation of a class factory
is supplied by an already running copy of the OLE server, if any. If there are
no copies of the OLE server running, a copy is automatically started to supply
the class object. The choice between single-use and multi-use OLE automation
servers is yours, when you implement your automation server. A single-use
server is recommended for better performance.

Related concepts:
* “Object Linking and Embedding (OLE) Automation with Visual Basic” in
the Application Development Guide: Building and Running Applications

* “Object Linking and Embedding (OLE) Automation with Visual C++” in the
Application Development Guide: Building and Running Applications

* ["OLE Automation Routine Design” on page 130

* [“Object Instance and Scratchpad Considerations and OLE Routines” on|

page 132]

Chapter 4. External Routines 137

Related tasks:
* [‘Creating and Registering OLE Automation Routines” on page 13()

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “Object Linking and Embedding (OLE) Samples” in the Application
Development Guide: Building and Running Applications

. I"Supported SQL Data Types in OLE Automation” on page 133|

OLE DB User-Defined Table Functions

138

The following sections describe how to write OLE DB table functions.

OLE DB User-Defined Table Functions

Microsoft® OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data stored in diverse information sources. The OLE
DB component DBMS architecture defines OLE DB consumers and OLE DB
providers. An OLE DB consumer is any system or application that consumes
OLE DB interfaces; an OLE DB provider is a component that exposes OLE DB
interfaces. There are two classes of OLE DB providers: OLE DB data providers,
which own data and expose their data in tabular format as a rowset; and OLE
DB service providers, which do not own their own data, but encapsulate some
services by producing and consuming data through OLE DB interfaces.

DB2 Universal Database simplifies the creation of OLE DB applications by
enabling you to define table functions that access an OLE DB data source.
DB2 is an OLE DB consumer that can access any OLE DB data or service
provider. You can perform operations including GROUP BY, JOIN, and
UNION on data sources that expose their data through OLE DB interfaces.
For example, you can define an OLE DB table function to return a table from
a Microsoft Access database or a Microsoft Exchange address book, then
create a report that seamlessly combines data from this OLE DB table function
with data in your DB2® database.

Using OLE DB table functions reduces your application development effort by
providing built-in access to any OLE DB provider. For C, Java, and OLE
automation table functions, the developer needs to implement the table
function, whereas in the case of OLE DB table functions, a generic built-in
OLE DB consumer interfaces with any OLE DB provider to retrieve data. You
only need to register a table function as LANGUAGE OLEDB, and refer to the
OLE DB provider and the relevant rowset as a data source. You do not have
to do any UDF programming to take advantage of OLE DB table functions.

Programming Server Applications

To use OLE DB table functions with DB2 Universal Database, you must install
OLE DB 2.0 or later, available from Microsoft at http://www.microsoft.com. If
you attempt to invoke an OLE DB table function without first installing OLE
DB, DB2 issues SQLCODE -465, SQLSTATE 58032, reason code 35. For the
system requirements and OLE DB providers available for your data sources,
refer to your data source documentation. For the OLE DB specification, see
the Microsoft OLE DB 2.0 Programmer’s Reference and Data Access SDK,
Microsoft Press, 1998.

Related concepts:

* “Object Linking and Embedding Database (OLE DB) Table Functions” in
the Application Development Guide: Building and Running Applications

* ["Fully Qualified Rowset Names” on page 14|

Related tasks:
* [‘Creating an OLE DB Table UDF” on page 139

Related reference:
* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2

* “Object Linking and Embedding Database (OLE DB) Table Function
Samples” in the Application Development Guide: Building and Running
Applications

* [“‘Supported SQL Data Types in OLE DB” on page 143|
Creating an OLE DB Table UDF

To define an OLE DB table function with a single CREATE FUNCTION
statement, you must:

* define the table that the OLE DB provider returns
* specify LANGUAGE OLEDB

* identify the OLE DB rowset and provide an OLE DB provider connection
string in the EXTERNAL NAME clause

OLE DB data sources expose their data in tabular form, called a rowset. A
rowset is a set of rows, each having a set of columns. The RETURNS TABLE
clause includes only the columns relevant to the user. The binding of table
function columns to columns of a rowset at an OLE DB data source is based
on column names. If the OLE DB provider is case sensitive, place the column
names in quotation marks; for example, "UPPERcase".

The EXTERNAL NAME clause can take either of the following forms:

'server!rowset'
or
"lrowset!connectstring'

Chapter 4. External Routines 139

140

where:
server identifies a server registered with the CREATE SERVER statement

rowset identifies a rowset, or table, exposed by the OLE DB provider; this
value should be empty if the table has an input parameter to pass
through command text to the OLE DB provider.

connectstring
contains initialization properties needed to connect to an OLE DB
provider. For the complete syntax and semantics of the connection
string, see the "Data Link API of the OLE DB Core Components” in
the Microsoft OLE DB 2.0 Programmer’s Reference and Data Access SDK,
Microsoft Press, 1998.

You can use a connection string in the EXTERNAL NAME clause of a CREATE
FUNCTION statement, or specify the CONNECTSTRING option in a CREATE
SERVER statement.

For example, you can define an OLE DB table function and return a table
from a Microsoft Access database with the following CREATE FUNCTION
and SELECT statements:
CREATE FUNCTION orders ()

RETURNS TABLE (orderid INTEGER, ...)

LANGUAGE OLEDB

EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;

Data Source=c:\msdasdk\bin\oledb\nwind.mdb";

SELECT orderid, DATE(orderdate) AS orderdate,
DATE(shippeddate) AS shippeddate

FROM TABLE(orders()) AS t

WHERE orderid = 10248;

Instead of putting the connection string in the EXTERNAL NAME clause, you
can create and use a server name. For example, assuming you have defined
the server Nwind, you could use the following CREATE FUNCTION statement:
CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER, ...)

LANGUAGE OLEDB
EXTERNAL NAME 'Nwind'!orders';

OLE DB table functions also allow you to specify one input parameter of any
character string data type. Use the input parameter to pass command text
directly to the OLE DB provider. If you define an input parameter, do not
provide a rowset name in the EXTERNAL NAME clause. DB2 passes the
command text to the OLE DB provider for execution and the OLE DB
provider returns a rowset to DB2. Column names and data types of the
resulting rowset need to be compatible with the RETURNS TABLE definition

Programming Server Applications

in the CREATE FUNCTION statement. Since binding to the column names of
the rowset is based on matching column names, you must ensure that you
name the columns properly.

The following example registers an OLE DB table function, which retrieves
store information from a Microsoft SQL Server 7.0 database. The connection
string is provided in the EXTERNAL NAME clause. Since the table function
has an input parameter to pass through command text to the OLE DB
provider, the rowset name is not specified in the EXTERNAL NAME clause.
The query example passes in a SQL command text that retrieves information
about the top three stores from a SQL Server database.

CREATE FUNCTION favorites (varchar(600))
RETURNS TABLE (store_id char (4), name varchar (41), sales integer)
SPECIFIC favorites
LANGUAGE OLEDB
EXTERNAL NAME '!!Provider=SQLOLEDB.1;Persist Security Info=False;
User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;
Locale Identifier=1033;Use Procedure for Prepare=1;
Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
OLE DB Services=CLIENTCURSOR;';

SELECT =*
FROM TABLE (favorites (' select top 3 sales.stor_id as store_id,
! stores.stor_name as name,

sum(sales. qty) as sales

from sales, stores

where sales.stor_id = stores.stor_id

group by sales.stor_id, stores.stor_name

order by sum(sales.qty) desc')) as f;

Related concepts:

* [“Fully Qualified Rowset Names” on page 142|
* ["OLE DB User-Defined Table Functions” on page 13§
* “Create the wrapper” in the Federated Systems Guide

Related tasks:

* “Adding OLE DB data sources to a federated server” in the Federated
Systems Guide

* “Setting up the server to access OLE DB data sources” in the Federated
Systems Guide

Related reference:

* “CREATE NICKNAME statement” in the SQL Reference, Volume 2
¢ “CREATE SERVER statement” in the SQL Reference, Volume 2

* “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Chapter 4. External Routines 141

142

* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2

* “Object Linking and Embedding Database (OLE DB) Table Function
Samples” in the Application Development Guide: Building and Running
Applications

* ["Supported SQL Data Types in OLE DB” on page 143

Fully Qualified Rowset Names

Some rowsets need to be identified in the EXTERNAL NAME clause through
a fully qualified name. A fully qualified name incorporates either or both of the
following:
* the associated catalog name, which requires the following information:

— whether the provider supports catalog names

— where to put the catalog name in the fully qualified name

— which catalog name separator to use
* the associated schema name, which requires the following information:

— whether the provider supports schema names

— which schema name separator to use

For information on the support offered by your OLE DB provider for catalog
and schema names, refer to the documentation of the literal information of
your OLE DB provider.

If DBLITERAL_CATALOG_NAME is not NULL in the literal information of your
provider, use a catalog name and the value of DBLITERAL_CATALOG_SEPARATOR
as a separator. To determine whether the catalog name goes at the beginning
or the end of the fully qualified name, refer to the value of
DBPROP_CATALOGLOCATION in the property set DBPROPSET_DATASOURCEINFO of
your OLE DB provider.

If DBLITERAL_SCHEMA_NAME is not NULL in the literal information of your
provider, use a schema name and the value of DBLITERAL_SCHEMA_SEPARATOR as
a separator.

If the names contain special characters or match keywords, enclose the names
in the quote characters specified for your OLE DB provider. The quote
characters are defined in the literal information of your OLE DB provider as
DBLITERAL_QUOTE_PREFIX and DBLITERAL_QUOTE_SUFFIX. For example, in the
following EXTERNAL NAME the specified rowset includes catalog name pubs
and schema name dbo for a rowset called authors, with the quote character "
used to enclose the names.

EXTERNAL NAME '!"pubs"."dbo"."authors"!Provider=SQLOLEDB.1;..."';

Programming Server Applications

For more information on constructing fully qualified names, refer to Microsoft®
OLE DB 2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998,
and the documentation for your OLE DB provider.

Related concepts:
* ["OLE DB User-Defined Table Functions” on page 138

Related reference:

* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2

Supported SQL Data Types in OLE DB

The following table shows how DB2 data types map to the OLE DB data
types as described in Microsoft OLE DB 2.0 Programmer’s Reference and Data
Access SDK, Microsoft Press, 1998. Use the mapping table to define the
appropriate RETURNS TABLE columns in your OLE DB table functions. For
example, if you define an OLE DB table function with a column of data type
INTEGER, DB2 requests the data from the OLE DB provider as DBTYPE_I4.

For mappings of OLE DB provider source data types to OLE DB data types,
refer to the OLE DB provider documentation. For examples of how the ANSI
SQL, Microsoft Access, and Microsoft SQL Server providers might map their
respective data types to OLE DB data types, refer to the Microsoft OLE DB 2.0
Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.

Table 9. Mapping DB2 Data Types to OLE DB

DB2 Data Type OLE DB Data Type
SMALLINT DBTYPE_I2

INTEGER DBTYPE_I4

BIGINT DBTYPE_I8

REAL DBTYPE_R4
FLOAT/DOUBLE DBTYPE_RS

DEC (p, s) DBTYPE_NUMERIC (p, s)
DATE DBTYPE_DBDATE

TIME DBTYPE_DBTIME
TIMESTAMP DBTYPE_DBTIMESTAMP
CHAR(N) DBTYPE_STR
VARCHAR(N) DBTYPE_STR

LONG VARCHAR DBTYPE_STR

CLOB(N) DBTYPE_STR

Chapter 4. External Routines 143

144

Table 9. Mapping DB2 Data Types to OLE DB (continued)

DB2 Data Type

OLE DB Data Type

CHAR(N) FOR BIT DATA

DBTYPE_BYTES

VARCHAR(N) FOR BIT DATA

DBTYPE_BYTES

LONG VARCHAR FOR BIT DATA

DBTYPE_BYTES

BLOB(N) DBTYPE_BYTES
GRAPHIC(N) DBTYPE_WSTR
VARGRAPHIC(N) DBTYPE_WSTR
LONG GRAPHIC DBTYPE_WSTR
DBCLOB(N) DBTYPE_WSTR

Note: OLE DB data type conversion rules are defined in the Microsoft OLE DB
2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.

For example:

* To retrieve the OLE DB data type DBTYPE_CY, the data can get
converted to OLE DB data type DBTYPE_NUMERIC(19,4), which
maps to DB2 data type DEC(19,4).

* To retrieve the OLE DB data type DBTYPE_I1, the data can get
converted to OLE DB data type DBTYPE_I2, which maps to DB2

data type SMALLINT.

* To retrieve the OLE DB data type DBTYPE_GUID, the data can get
converted to OLE DB data type DBTYPE_BYTES, which maps to DB2
data type CHAR(12) FOR BIT DATA.

Related concepts:

* ["OLE DB User-Defined Table Functions” on page 13§

Related tasks:

* ['Creating an OLE DB Table UDF” on page 139

Programming Server Applications

Chapter 5. Invoking/Calling Routines

Invoking Routines 145 Referencing Routines. .

Invoking Stored Procedures 146 Routine Names and Paths .

Invoking UDFs 148 References to Functions .

Invoking User-Defined Table Functrons .. 149 Function Selection .
Routine Nesting 151 Distinct Types as Routine Parameters .
Invoking 32-bit Routmes on a 64 b1t LOB Values as UDF Parameters .
Database Server . . R Fo | References to Stored Procedures .
Code Pages and Routmes R 174 Stored Procedure Selection .

. 154
. 154
. 156
. 157
. 159
. 160
. 161
. 162

Invoking Routines

Once a routine is written, compiled, linked, and registered with the database,

it can be invoked.
Prerequisites:

In order to invoke the routine, it must be registered with the database, and

the library or class file must be installed in the correct location. If the library

is not present in the location specified by the CREATE statement, error
SQL0444 will occur.

Procedure:

Each type of routine is invoked differently, as is reflective of their varying
natures.

To invoke a particular type of routine:

* [Invoke a procedure]

¢ [[nvoke a scalar UDF or method from an SQL expression.|
* [[nvoke a user-defined table function from the FROM clause of a SELECT|

statement.|

Related concepts:
* ['Routines (Stored Procedures, UDFs, Methods)” on page 3

Related tasks:
* ['Invoking Stored Procedures” on page 146|

* ['Invoking UDFs” on page 148|

* ['Invoking User-Defined Table Functions” on page 149|

* [‘Writing Routines” on page 29|

© Copyright IBM Corp. 1993 - 2002 145

../ad/t0009000.htm
../ad/t0009118.htm
../ad/t0009218.htm
../ad/t0009218.htm

* [‘Registering Routines” on page 27|

Invoking Stored Procedures

146

Once a stored procedure is written and registered with the database, you can
invoke it by using the CALL statement. The CALL statement can pass
parameters to the stored procedure and receive parameters returned from the
stored procedure. Any result sets returned by the stored procedure can be
processed once the stored procedure has finished running.

You can write the client application that invokes the stored procedure in a
different language than the one used to write the stored procedure. In
addition, the client application that invokes the stored procedure can be
executed on a different platform than the one where the stored procedure
resides.

Prerequisites:

In order to invoke the stored procedure, it must be registered with the
database.

For the list of privileges required to invoke stored procedures, see the CALL
statement.

Procedure:

To invoke a stored procedure from an application or routine:

1. Declare, allocate, and initialize storage for the optional data structures and
host variables or parameter markers.

This involves the following steps:

* Assign a host variable or parameter marker to each parameter of the
stored procedure.

* Initialize the host variables or parameter markers that correspond to IN
or INOUT parameters.

* Invoke the stored procedure.

* Process the data in the OUT and INOUT host variables or parameter
markers, as well as any result sets.
2. Connect to a database by executing the CONNECT TO statement, or by
doing an implicit connect.
3. Invoke the stored procedure through the SQL CALL statement.

4. Issue a COMMIT or ROLLBACK to the database.

Programming Server Applications

Note: While the stored procedure can issue COMMIT or ROLLBACK
statements, the recommended practice is to have the client

application issue COMMIT or ROLLBACK. This enables your client
application to evaluate the data returned by the stored procedure

and to decide whether to commit the transaction or roll it back.

Stored procedures cannot issue COMMIT or ROLLBACK statements

if the stored procedure was invoked from an application that
established a type 2 connection to the database.

5. Disconnect from the database.

Note: You can code SQL statements at any point between steps 2 and 5.

Related concepts:

* ['Routines: Stored Procedures” on page 7|

Related tasks:

* “Calling Stored Procedures with the CALL Statement” in the Application

Development Guide: Building and Running Applications

* [“Invoking Routines” on page 145

Related reference:

“CALL statement” in the SQL Reference, Volume 2

“COMMIT statement” in the SQL Reference, Volume 2

“CONNECT (Type 1) statement” in the SQL Reference, Volume 2
“CONNECT (Type 2) statement” in the SQL Reference, Volume 2
“CREATE PROCEDURE statement” in the SQL Reference, Volume 2
“ROLLBACK statement” in the SQL Reference, Volume 2

Related samples:

“spclient.c - Call various stored procedures (CLI)”
“spclient.sqc -- Call various stored procedures (C)”
“spclient.sqC -- Call various stored procedures (C++)”

“SpClient.java -- Call a variety of types of stored procedures from
SpServer.java (JDBC)”

“SpClient.sqlj -- Call a variety of types of stored procedures from
SpServer.sqlj (SQLj)”

Chapter 5. Invoking/Calling Routines

147

Invoking UDFs

148

Once the UDF is written and registered with the database, you can invoke it
within an SQL statement wherever an expression is valid.

Restrictions:

For restrictions on invoking UDFs, see the CREATE FUNCTION topics in the
related links.

Prerequisites:
In order to invoke the UDEF, it must be registered with the database.
Procedure:

To invoke a scalar UDF, include it in an SQL statement where it is to process a
set of input values. A scalar UDF can be invoked anywhere an expression is
valid.

For example, suppose that you have defined a UDF called TOTAL_SAL that
adds the base salary and bonus together for each employee row in the
EMPLOYEE table.

CREATE FUNCTION TOTAL_SAL
(SALARY DECIMAL(9,2), BONUS DECIMAL(9,2))
RETURNS DECIMAL(9,2)
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SALARY+BONUS

The following is a SELECT statement that makes use of TOTAL_SAL:
SELECT LASTNAME, TOTAL_SAL(SALARY, BONUS) AS TOTAL
FROM EMPLOYEE

Related concepts:

* ['References to Functions” on page 156|

* ['Routine Names and Paths” on page 154|

Related tasks:
¢ ["Invoking User-Defined Table Functions” on page 149|

Related reference:
» “SELECT statement” in the SQL Reference, Volume 2

Programming Server Applications

* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (External Scalar) statement” in the SQL Reference,
Volume 2

¢ “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

Related samples:
¢ “udfcli.sqc -- Call a variety of types of user-defined functions (C)”

* “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined
functions. (C)”

+ “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

* “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

¢ “UDEFclijava -- Call the UDFs in UDFsrv.java (JDBC)”
* “UDFjcli,java -- Call the UDFs in UDFjsrv,java (JDBC)”
¢ “UDFcli.sqlj -- Call the UDFs in UDFsrv.java (SQL;j)”

¢ “UDFjcli.sqlj -- Call the UDFs in UDFjsrvjava (5QLj)”

Invoking User-Defined Table Functions

Once the user-defined table function is written and registered with the
database, you can invoke it in the FROM clause of a SELECT statement.

Restrictions:

For restrictions on invoking user-defined table functions, see the CREATE
FUNCTION topics in the related links.

Prerequisites:

In order to invoke the user-defined table function, it must be registered with
the database.

Procedure:

To invoke a user-defined table function, include it in the FROM clause of a
SELECT statement where it is to process a set of input values.

For example, the following CREATE FUNCTION statement defines a table
function that returns the employees in a specified department number.

Chapter 5. Invoking /Calling Routines 149

150

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO VARCHAR(3))
RETURNS TABLE (EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))
LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN
SELECT EMPNO, LASTNAME, FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

The following is a SELECT statement that makes use of DEPTEMPLOYEES:
SELECT EMPNO, LASTNAME, FIRSTNAME FROM TABLE(DEPTEMPLOYEES('A0@')) AS D

Related concepts:

* ['References to Functions” on page 156|

* ['Routine Names and Paths” on page 154|

Related tasks:
+ [“Invoking Routines” on page 145
* [“Invoking UDFs” on page 148

Related reference:

* “CREATE FUNCTION (OLE DB External Table) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

* “CREATE FUNCTION (External Table) statement” in the SQL Reference,
Volume 2

Related samples:
* “udfcli.sqc -- Call a variety of types of user-defined functions (C)”

» “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined
functions. (C)”

* “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

* “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

» “UDFclijava -- Call the UDFs in UDFsrv.java (JDBC)”
* “UDFjcli.java -- Call the UDFs in UDFjsrv.java (JDBC)”
» “UDkFcli.sqlj -- Call the UDFs in UDFsrv.java (SQLj)”

» “UDFjcli.sqlj -- Call the UDFs in UDFjsrv.java (SQLj)”

Programming Server Applications

Routine Nesting

In the context of routines, nesting refers to the situation where one routine
invokes another. That is to say, the SQL issued by one routine can reference
another routine, which could issue SQL that again references another routine,
and so on. If, in this nesting, we encounter a routine that is already in the
current "stack”, we are said to be in a recursive nesting situation.

You can use nesting and recursion in your DB2® routines under the following
restrictions:

16 levels of nesting
You can nest routine invocations up to 16 levels deep. Consider a
scenario in which routine A calls routine B, and routine B calls routine
C. In this example, the execution of routine C is at nesting level 3. A
further thirteen levels of nesting are possible.

Restrictions
A routine cannot call a target routine that is cataloged with a higher
SQL data access level. For example, a UDF created with the
CONTAINS SQL clause can call stored procedures created with either
the CONTAINS SQL clause or the NO SQL clause. However, this
routine cannot call stored procedures created with either the READS
SQL DATA clause or the MODIFIES SQL DATA clause (SQLCODE
-577, SQLSTATE 38002). This is because the invoker’s SQL level does
not allow any read or modify operations to occur (this is inherited by
the routine being invoked).

Another limitation when nesting routines is that access to tables is
restricted to prevent conflicting read and write operations between
routines.

Related concepts:

« [‘Conflicts When Reading and Writing Tables From Routines” on page 33|

* ['Security Considerations for Routines” on page 20|

Invoking 32-bit Routines on a 64-bit Database Server

It is possible to invoke 32-bit routines on a 64-bit database server. The first
time a 32--bit routine is invoked in such an environment, there is a
performance degradation. Subsequent invocations of the 32-bit stored
procedure will perform the same as an equivalent 64-bit routine.

For Java stored procedures, a 32-bit JVM can function on a 64-bit database

server. For 32-bit Java routines using this JVM, there is no additional
performance overhead. A comparable 64-bit routine using a 64-bit JVM will

Chapter 5. Invoking/Calling Routines 151

run no faster. However, a 32-bit Java routine running on a 64-bit database
server will not scale well due to the restriction of needing to run in FENCED
NOT THREADSAFE mode. Because of this, every invocation of such a routine
will require its own JVM.

Restrictions:

32-bit routines must be registered as FENCED and NOT THREADSAFE in
order to work in a 64-bit instance.

It is not possible to invoke 32-bit routines on a Linux/IA-64 database server.
Procedure:

To run existing 32-bit routines on a 64-bit server:
1. Copy the routine class or library to the database routines directory:
* UNIX: sqllib/function
* Windows: sqllib\function
2. Register the stored procedure with the CREATE PROCEDURE statement.
3. Invoke the stored procedure with the CALL statement.

Related concepts:

+ ["Java Routines” on page 118§|

Related tasks:
+ ["Invoking Routines” on page 145

Code Pages and Routines

152

Character data is passed to external routines in the code page of the database.
Likewise, a character string that is output from the routine is assumed by the
database to use that database’s code page.

When a client program (using, for example, code page A) invokes a routine
that accesses a database using a different code page (for example, code page
Z), the following events occur:

1. When an SQL statement is invoked, input character data is converted from
the application code page (A) to the one associated with the database (Z).
Conversion does not occur for BLOBs or data that will be used as FOR BIT
DATA.

2. Once the input data is converted, the database manager does not perform
any code page conversions before invoking the routine. All SQL is

Programming Server Applications

performed in the codepage of the database. Therefore, you must run the
routine using the same code page as the database, in this example, code
page Z.

It is strongly recommended that you precompile, compile, and bind the
server routine using the same code page as the database. This might not
be possible in all cases. For example, you can create a Unicode database in
a Windows® environment. However, if the Windows environment does not
have the Unicode code page, you would have to precompile, compile, and
bind the application that creates the routine in a Windows code page. The
routine will work if the application has no special delimiter characters that
the precompiler does not understand.

When the statement finishes, the database manager converts all output
character data from the database code page (Z) back to the application
code page (A). If a routine raised an error during the execution of the SQL
statement, the SQLSTATE and diagnostic message from the routine will be
converted to the application code page (A). Conversion does not occur for
BLOBs or for data that was used as FOR BIT DATA.

By using the DBINFO option on the CREATE FUNCTION, CREATE
PROCEDURE, and CREATE TYPE statements, the database code page is
passed to the routine. Using this information, a routine that is sensitive to the
code page can be written to operate in many different code pages.

Related concepts:

“Character conversion” in the SQL Reference, Volume 1

“Derivation of Code Page Values” in the Application Development Guide:
Programming Client Applications

“Active Code Page for Precompilation and Binding” in the Application
Development Guide: Programming Client Applications

“Active Code Page for Application Execution” in the Application
Development Guide: Programming Client Applications

“Character Conversion Between Different Code Pages” in the Application
Development Guide: Programming Client Applications

“When Code Page Conversion Occurs” in the Application Development Guide:
Programming Client Applications

“Character Substitutions During Code Page Conversions” in the Application
Development Guide: Programming Client Applications

“Supported Code Page Conversions” in the Application Development Guide:
Programming Client Applications

“Application Development in Unequal Code Page Situations” in the
Application Development Guide: Programming Client Applications

Related reference:

Chapter 5. Invoking/Calling Routines 153

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

* “Supported territory codes and code pages” in the Administration Guide:
Planning

* “Conversion tables for code pages 923 and 924" in the Administration Guide:
Planning

Referencing Routines

154

The following sections describe how the database server identifies, references,
and selects routines when you invoke them.

Routine Names and Paths

The qualified name of a stored procedure or UDF is schema-name.routine-
name. You can use this qualified name anywhere you refer to a stored
procedure or UDEF. For example:

SANDRA.BOAT_COMPARE SMITH.FOO SYSIBM.SUBSTR SYSFUN.FLOOR

However, you may also omit the schema-name., in which case, DB2® will
attempt to identify the stored procedure or UDF to which you are referring.
For example:

BOAT_COMPARE FOO SUBSTR FLOOR
The qualified name of a method is schema-name.type..method-name.

The concept of SQL path is central to DB2’s resolution of ungqualified references
that occur when you do not use the schema-name. The SQL path is an ordered
list of schema names. It provides a set of schemas for resolving unqualified
references to stored procedures, UDFs, and types. In cases where a reference
matches a stored procedure, type, or UDF in more than one schema in the
path, the order of the schemas in the path is used to resolve this match. The
SQL path is established by means of the FUNCPATH option on the
precompile and bind commands for static SQL. The SQL path is set by the
SET PATH statement for dynamic SQL. The SQL path has the following
default value:

"SYSIBM","SYSFUN","SYSPROC", "ID"

This applies to both static and dynamic SQL, where ID represents the current
statement authorization ID.

Routine names can be overloaded, which means that multiple routines, even in
the same schema, can have the same name. Multiple functions or methods

Programming Server Applications

with the same name can have the same number of parameters, as long as the
data types differ. This is not true for stored procedures, where multiple stored
procedures with the same name must have different numbers of parameters.
Instances of different routine types do not overload one-another, except for
methods, which are able to overload functions. For a method to overload a
function, the method must be registered using the WITH FUNCTION
ACCESS clause.

A function, a stored procedure, and a method can have identical signatures
and be in the same schema without overloading each other. In the context of
routines, signatures are the qualified routine name concatenated with the
defined data types of all the parameters in the order in which they are
defined.

Methods are invoked against instances of their associated structured type.
When a subtype is created, among the attributes it inherits are the methods
defined for the supertype. Hence, a supertype’s methods can also be run
against any instances of its subtypes. When defining a subtype you can
override the supertype’s method. To override a method means to reimplement
it specifically for a given subtype. This facilitates the dynamic dispatch of
methods (also known as polymorphism), where an application will execute
the most specific method depending on the type of the structured type
instance (for example, where it is situated in the structured type hierarchy).

Each routine type has its own selection algorithm that takes into account the
facts of overloading (in the case of methods, and overriding) and SQL path to

choose the most appropriate match for every routine reference.

Related concepts:

* ["User-Defined Structured Types” on page 200|
* ["Dynamic Dispatch of Methods” on page 207

Related tasks:
* ['Defining Behavior for Structured Types” on page 206]|

Related reference:

* “Functions” in the SQL Reference, Volume 1

¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “SET PATH statement” in the SQL Reference, Volume 2

* “BIND Command” in the Command Reference

¢ “PRECOMPILE Command” in the Command Reference

Chapter 5. Invoking/Calling Routines 155

156

* “Methods” in the SQL Reference, Volume 1

References to Functions

Each reference to a function, whether it is a UDF, or a built-in function,
contains the following syntax:

»»>—function_name—() <
|_s
T xpression]—[

In the preceding syntax diagram, function_name can be either an unqualified
or a qualified function name. The arguments can number from 0 to 90 and are
expressions. Examples of some components that can compose expressions are
the following:

* a column name, qualified or unqualified
* a constant

* a host variable

* a special register

* a parameter marker

The position of the arguments is important and must conform to the function
definition for the semantics to be correct. Both the position of the arguments
and the function definition must conform to the function body itself. DB2®
does not attempt to shuffle arguments to better match a function definition,
and DB2 does not understand the semantics of the individual function
parameters.

Use of column names in UDF argument expressions requires that the table
references that contain the columns have proper scope. For table functions
referenced in a join and using any argument involving columns from another
table or table function, the referenced table or table function must precede the
table function containing the reference in the FROM clause.

In order to use parameter markers in functions you cannot simply code the
following:

BLOOP(?)

Because the function selection logic does not know what data type the
argument may turn out to be, it cannot resolve the reference. You can use the
CAST specification to provide a type for the parameter marker. For example,
INTEGER, and then the function selection logic can proceed:

BLOOP(CAST(? AS INTEGER))

Programming Server Applications

Some valid examples of function invocations are:

AVG(FLOAT_COLUMN)
BLOOP (COLUMN1)
BLOOP (FLOAT _COLUMN + CAST(? AS INTEGER))
BLOOP(:hostvar :indicvar)
BRIAN.PARSE(CHAR_COLUMN CONCAT USER, 1, 0, 0, 1)
CTR()
FLOOR (FLOAT_COLUMN)
PABLO.BLOOP (A+B)
PABLO.BLOOP(:hostvar)
"search_schema" (CURRENT FUNCTION PATH, 'GENE')
SUBSTR(COLUMN2,8,3)
SYSFUN.FLOOR (AVG(EMP.SALARY))
SYSFUN.AVG(SYSFUN.FLOOR (EMP.SALARY))
SYSIBM.SUBSTR(COLUMNZ,11,LENGTH(COLUMN3))
SQRT(SELECT SUM(1ength*Tength)

FROM triangles

WHERE 1id= 'J522'

AND Tegtype <> 'HYP')

If any of the above functions are table functions, the syntax to reference them
is slightly different than presented previously. For example, if PABLO.BLOOP is a
table function, to properly reference it, use:

TABLE (PABLO.BLOOP (A+B)) AS Q

Related tasks:
* [“Invoking UDFs” on page 148|
* [“Invoking User-Defined Table Functions” on page 149

Related reference:
* “Functions” in the SQL Reference, Volume 1

Function Selection

For both qualified and unqualified function references, the function selection
algorithm looks at all the applicable functions, both built-in and user-defined, that
have:

* The given name

* The same number of defined parameters as arguments in the function
reference

* Each parameter identical to or promotable from the type of the
corresponding argument.

Applicable functions are functions in the named schema for a qualified

reference, or functions in the schemas of the SQL path for an unqualified
reference. The algorithm looks for an exact match, or failing that, a best match

Chapter 5. Invoking/Calling Routines 157

158

among these functions. The SQL path is used, in the case of an unqualified
reference only, as the deciding factor if two identically good matches are
found in different schemas.

You can nest function references, even references to the same function. This is
generally true for built-in functions as well as UDFs; however, there are some
limitations when column functions are involved.

For example:

CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...
CREATE FUNCTION BLOOP (DOUBLE) RETURNS INTEGER ...

Now consider the following DML statement:
SELECT BLOOP(BLOOP(COLUMN1)) FROM T

If column1 is a DECIMAL or DOUBLE column, the inner BLOOP reference
resolves to the second BLOOP defined above. Because this BLOOP returns an
INTEGER, the outer BLOOP resolves to the first BLOOP.

Alternatively, if columnl is a SMALLINT or INTEGER column, the inner
bloop reference resolves to the first BLOOP defined above. Because this
BLOOP returns an INTEGER, the outer BLOOP also resolves to the first
BLOOP. In this case, you are seeing nested references to the same function.

By defining a function with the name of one of the SQL operators, you can
actually invoke a UDF using infix notation. For example, suppose you can
attach some meaning to the "+" operator for values which have distinct type
BOAT. You can define the following UDEF:

CREATE FUNCTION "+" (BOAT, BOAT) RETURNS ...

Then you can write the following valid SQL statement:

SELECT BOAT_COL1 + BOAT_COL2
FROM BIG_BOATS
WHERE BOAT_OWNER = 'Nelson Mattos'

But you can also write the equally valid statement:

SELECT "+"(BOAT_COL1, BOAT_COL2)
FROM BIG_BOATS
WHERE BOAT_OWNER = 'Nelson Mattos'

Note that you are not permitted to overload the built-in conditional operators
such as >, =, LIKE, IN, and so on, in this way.

For a more thorough description of function selection, see the Function
References section in the Functions topic listed in the related links.

Programming Server Applications

Related concepts:

* ['References to Functions” on page 156|

Related tasks:
* [Invoking UDFs” on page 148|

* ['Invoking User-Defined Table Functions” on page 149|

Related reference:

* “Functions” in the SQL Reference, Volume 1

¢ “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

Distinct Types as Routine Parameters

UDFs and methods can be defined with distinct types as parameters or as the
result. DB2 will pass the value to the UDF or method in the format of the
source data type of the distinct type.

Distinct type values that originate in a host variable and which are used as
arguments to a UDF that has its corresponding parameter defined as a distinct
type, must be explicitly cast to the distinct type by the user. There is no host
language type for distinct types. DB2’s strong typing necessitates this,
otherwise your results may be ambiguous. Consider the BOAT distinct type
which is defined over a BLOB, and consider the BOAT_COST UDF defined as
follows:

CREATE FUNCTION BOAT_COST (BOAT)
RETURNS INTEGER

In the following fragment of a C language application, the host variable :ship
holds the BLOB value that is to passed to the BOAT_COST function:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(150K) ship;
EXEC SQL END DECLARE SECTION;

Both of the following statements correctly resolve to the BOAT_COST
function, because both cast the :ship host variable to type BOAT:

.. SELECT BOAT_COST (BOAT(:ship)) FROM ...
. SELECT BOAT_COST (CAST(:ship AS BOAT)) FROM ...

If there are multiple BOAT distinct types in the database, or BOAT UDFs in

other schema, you must exercise care with your SQL path. Your results may
otherwise be ambiguous.

Chapter 5. Invoking/Calling Routines 159

Related concepts:

» “User-Defined Types (UDTs) and Large Objects (LOBs)” in the Application
Development Guide: Programming Client Applications

* ['Function Selection” on page 157

* [‘Stored Procedure Selection” on page 162]

Related tasks:
* [“Passing Structured Type Parameters to External Routines” on page 257|
+ ["'LOB Values as UDF Parameters” on page 160

Related reference:

* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2
e “SELECT statement” in the SQL Reference, Volume 2

LOB Values as UDF Parameters

UDFs can be defined with parameters or results having any of the LOB types:
BLOB, CLOB, or DBCLOB. DB2 will materialize the entire LOB value in
storage before invoking such a function, even if the source of the value is a
LOB locator host variable. For example, consider the following fragment of a C
language application:

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB(150K) clobl50K ; /* LOB host var */
SQL TYPE IS CLOB_LOCATOR clob_locatorl; /* LOB locator host var */
char string[40]; /* string host var =*/

EXEC SQL END DECLARE SECTION;

Either host variable :cT1ob150K or :clob_Tlocatorl is valid as an argument for
a function whose corresponding parameter is defined as CLOB(500K). For
example, suppose you have registered a UDF as follows:

CREATE FUNCTION FINDSTRING (CLOB (500K, VARCHAR(200))

Both of the following invocations of FINDSTRING are valid in the program:

... SELECT FINDSTRING (:clob150K, :string) FROM ...
... SELECT FINDSTRING (:clob_Tlocatorl, :string) FROM ...

UDF parameters or results which have one of the LOB types can be created
with the AS LOCATOR modifier. In this case, the entire LOB value is not
materialized prior to invocation. Instead, a LOB LOCATOR is passed to the
UDE which can then use SQL to manipulate the actual bytes of the LOB
value.

160 Programming Server Applications

You can also use this capability on UDF parameters or results which have a
distinct type that is based on a LOB. Note that the argument to such a
function can be any LOB value of the defined type; it does not have to be a
host variable defined as one of the LOCATOR types. The use of host variable
locators as arguments is completely orthogonal to the use of AS LOCATOR in
UDF parameters and result definitions.

Related concepts:

+ “User-Defined Types (UDTs) and Large Objects (LOBs)” in the Application
Development Guide: Programming Client Applications

* [‘Function Selection” on page 157|

* [‘Stored Procedure Selection” on page 162

Related tasks:
* [‘Retrieving a LOB Value with a LOB Locator” on page 168

« ['Distinct Types as Routine Parameters” on page 159

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2
* “CREATE METHOD statement” in the SQL Reference, Volume 2

References to Stored Procedures

Stored Procedures are invoked from the CALL statement where they are
referenced by a qualified name (schema and stored procedure name), followed
by a list of arguments enclosed by parentheses. A stored procedure can also
be invoked without the schema name, resulting in a choice of possible stored
procedures in different schemas with the same number of parameters.

Each parameter passed to the stored procedure can be composed of a host
variable, parameter marker, expression, or NULL. The following are
restrictions for stored procedure parameters:

¢ OUT and INOUT parameters must be host variables.

« NULLSs cannot be passed to Java'" stored procedures unless the SQL data
type maps to a Java class type.

* NULLSs cannot be passed to PARAMETER STYLE GENERAL stored
procedures.

The position of the arguments is important and must conform to the stored
procedure definition for the semantics to be correct. Both the position of the
arguments and the stored procedure definition must conform to the stored
procedure body itself. DB2® does not attempt to shuffle arguments to better
match a stored procedure definition, and DB2 does not understand the
semantics of the individual stored procedure parameters.

Chapter 5. Invoking /Calling Routines 161

162

Related concepts:

* ['Parameter Styles for External Routines” on page 71|

Related tasks:
* ["'Invoking Stored Procedures” on page 146

Related reference:
* “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

* [“Syntax for Passing Arguments to Routines Written in C/C++, OLE, od
COBOL” on page 74|

Stored Procedure Selection

Given a stored procedure invocation, the database manager must decide

which of the possible stored procedures with the same name to call. Stored

procedure resolution is done using the steps that follow.

1. Find all stored procedures from the catalog (SYSCAT.ROUTINES), such
that all of the following are true:

* For invocations where the schema name was specified (that is, qualified
references), the schema name and the stored procedure name match the
invocation name.

* For invocations where the schema name was not specified (that is,
unqualified references), the stored procedure name matches the
invocation name, and has a schema name that matches one of the
schemas in the SQL path.

* The number of defined parameters matches the invocation.
* The invoker has the EXECUTE privilege on the stored procedure.
2. Choose the stored procedure whose schema is earliest in the SQL path.

If there are no candidate stored procedures remaining after the first step, an
error is returned (SQLSTATE 42884).

Related concepts:

* ['References to Stored Procedures” on page 161|

Related tasks:
* ['Invoking Stored Procedures” on page 146|

Programming Server Applications

Part 2. Large Objects, User-Defined Distinct Types, and
Triggers

© Copyright IBM Corp. 1993 - 2002 163

164 Programming Server Applications

Chapter 6. Large Objects

Large Object Usage165 Writing Data from a CLOB Column to a Text
Large Object Locators 166 File175
Retrieving a LOB Value with a LOB Locator 168 Inserting Data from a Text File into a CLOB
Deferring the Evaluation of LOB Expressions 170 Column176
Large Object File Reference Variables . . . 173

Large Object Usage

The VARCHAR and VARGRAPHIC data types have a limit of 32K bytes of
storage. While this may be sufficient for small to medium size text data,
applications often need to store large text documents. They may also need to
store a wide variety of additional data types such as audio, video, drawings,
mixed text and graphics, and images. DB2® provides three data types to store
these data objects as strings of up to two gigabytes (GB) in size. The three
large object (LOB) data types are Binary Large Objects (BLOBs), Character
Large Objects (CLOBs), and Double-Byte Character Large Objects (DBCLOBs).

Note: CLOBs can contain either single-byte or double-byte characters.
DBCLOBs can contain either four-byte or double byte characters.

Each DB2 table may have a large amount of associated LOB data. Although
any single LOB value may not exceed 2 gigabytes, a single row may contain
as much as 24 gigabytes of LOB data, and a table may contain as much as 2
terabytes of LOB data.

A separate database location stores all large object values outside their records
in the table. There is a large object descriptor for each large object in each row
in a table. The large object descriptor contains control information used to
access the large object data stored elsewhere on disk. It is the storing of large
object data outside their records that allows LOBs to be 2 GB in size.
Accessing the large object descriptor causes a small amount of overhead when
manipulating LOBs. (For storage and performance reasons you would likely
not want to put small data items into LOBs.)

The maximum size for each large object column is part of the declaration of
the large object type in the CREATE TABLE statement. The maximum size of
a large object column determines the maximum size of any LOB descriptor in
that column. As a result, it also determines how many columns of all data
types can fit in a single row. The space used by the LOB descriptor in the row
ranges from approximately 60 to 300 bytes, depending on the maximum size
of the corresponding column.

© Copyright IBM Corp. 1993 - 2002 165

The lob-options-clause on CREATE TABLE gives you the choice to log (or not)
the changes made to the LOB column(s). This clause also allows for a compact
representation for the LOB descriptor (or not). This means you can allocate
only enough space to store the LOB or you can allocate extra space for future
append operations to the LOB. The tablespace-options-clause allows you to
identify a LONG table space to store the column values of long field or LOB
data types.

With their potentially large size, LOBs can slow down the performance of
your database system significantly when moved into or out of a database.
Even though DB2 does not allow logging of a LOB value greater than 1 GB,
LOB values with sizes approaching 1GB can quickly push the database log to
near capacity. An error, SQLCODE -355 (SQLSTATE 42993), results from
attempting to log a LOB greater than 1 GB in size. The lob-options-clause in
the CREATE TABLE and ALTER TABLE statements allows users to turn off
logging for a particular LOB column. Although setting the option to NOT
LOGGED will improve performance, changes to the LOB values after the most
recent backup are lost during roll-forward recovery.

When selecting a LOB value, you have three options:

1. Select the entire LOB value into a host variable. The entire LOB value is
copied from the server to the client. This is inefficient and is sometimes
not feasible. Host variables use the client memory buffer, which may not
have the capacity to hold larger LOB values.

2. Select just a LOB locator into a host variable. The LOB value remains on
the server; the LOB locator moves to the client. If the LOB value is very
large and is needed only as an input value for one or more subsequent
SQL statements, then it is best to keep the value in a locator. The use of a
locator eliminates any client/server communication traffic needed to
transfer the LOB value to the host variable and back to the server.

3. Select the entire LOB value into a file reference variable. The LOB value
(or a part of it) is moved to a file at the client without going through the
application’s memory.

Related concepts:

* ["Large Object Locators” on page 166|

* ["Large Object File Reference Variables” on page 173

Large Object Locators

166

A large object locator (or LOB locator) is a host variable with a 4-byte value
that represents a single LOB value in the database server. LOB locators
provide users with a mechanism by which they can easily manipulate very
large objects in application programs without requiring them to store the
entire LOB value on the client machine where the application program may be

Programming Server Applications

running. Subsequent statements can then use the locators to perform
operations on the data without necessarily retrieving the entire large object.
Locator variables are used to reduce the storage requirements for applications
that access LOBs, and improve their performance by reducing the flow of data
between the client and the server.

LOB locators are ideally suited for a number of programming scenarios:
1. When moving only a small part of a much larger LOB to a client program.
2. When the entire LOB cannot fit in the application’s memory.

3. When the program needs a temporary LOB value from a LOB expression
but does not need to save the result.

LOB locators can also represent the value associated with a LOB expression.
For example, a LOB locator might represent the value associated with:

SUBSTR(<Tob 1> CONCAT <lob 2> CONCAT
<lob 3>, <start>, <length>)

It is important to understand that a LOB locator represents a value, not a row
or location in the database. Once a value is selected into a locator, there is no
operation that one can perform on the original row or table that will affect the
value that is referenced by the locator. The value associated with a locator is
valid until the transaction ends, or until the locator is explicitly freed,
whichever comes first. Locators do not force extra copies of the data in order
to provide this function. Instead, the locator mechanism stores a description of
the base LOB value. The materialization of the LOB value (or expression, as
shown above) is deferred until it is actually assigned to some location -- either
into a user buffer in the form of a host variable or into another record’s field
value in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
The FREE LOCATOR statement releases a locator from its associated value. In
a similar way, a commit or roll-back operation frees all LOB locators
associated with the transaction. Furthermore, a LOB locator is not a database
type; it is never stored in the database and, as a result, cannot participate in
views or check constraints. However, since a LOB locator is a client
representation of a LOB type, there are SQLTYPEs for LOB locators so that
they can be described within an SQLDA structure that is used by FETCH,
OPEN and EXECUTE statements. They can also be passed between DB2® and
UDFs.

For normal host variables in an application program, when selecting a NULL
value into a host variable, the indicator variable is set to -1, signifying that the
value is NULL. In the case of LOB locators, however, the meaning of indicator
variables is slightly different. Since a locator host variable itself can never be

Chapter 6. Large Objects 167

NULL, a negative indicator variable value indicates that the LOB value
represented by the LOB locator is NULL.

Related concepts:

* ["Large Object Usage” on page 165

Related tasks:
+ [“Retrieving a LOB Value with a LOB Locator” on page 16§
* ["Deferring the Evaluation of LOB Expressions” on page 170|

Related samples:

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

* “dtlob.sqc -- How to use the LOB data type (C)”

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”
* “dtlob.sqC -- How to use the LOB data type (C++)”

» “dtLob.bas -- Get/set Large Objects (LOBs)”

* “DtLob.java -- How to use LOB data type (JDBC)”

* “DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

* “lobeval.sgb -- Demonstrates how to use a Large Object (LOB) (IBM
COBOL)”

* “lobloc.sgb -- Demonstrates the use of LOB locators (IBM COBOL)”

Retrieving a LOB Value with a LOB Locator

If you need to extract data from a LOB you can use LOB locators. This is a
good alternative if the LOB to be accessed is large. Transferring the entire LOB
to a client when only a subset of the LOB data is needed is avoided with the
use of locators.

The example uses embedded SQL in C.
Procedure:

To retrieve a LOB value with a LOB locator:
1. Declare the LOB locator host variables:

EXEC SQL BEGIN DECLARE SECTION;
char number[7];
sqlint32 deptInfoBeginlLoc;
sqlint32 deptInfoEndLoc;
SQL TYPE IS CLOB_LOCATOR resume;
SQL TYPE IS CLOB_LOCATOR deptBuffer;
short lobind;

168 Programming Server Applications

char buffer[1000]="";
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

In the host variable declaration section:
* number will contain the value returned by empno in the SELECT
statement to be issued by the cursor cl.

* deptInfoBeginlLoc and deptInfoEnd will temporarily hold LOB locator

values.
* resume and deptBuffer are LOB locators.
e lobind is used to indicate if the LOB read is null or not.
e buffer will contain the data extracted from the LOB.

* userid and passwd represent a userid and password combination, which

are needed for the application to connect to a database.
Connect the application to the database.
Declare and open a cursor:
EXEC SQL DECLARE c1 CURSOR FOR
SELECT empno, resume FROM emp_resume WHERE resume_format='ascii'
AND empno <> 'A00130';
EXEC SQL OPEN cl;
Fetch the LOB value into the host variable locator.
EXEC SQL FETCH c1 INTO :number, :resume :lobind;
Evaluate the LOB locator:
a. Locate the beginning of Department Information section:

EXEC SQL VALUES (POSSTR(:resume, 'Department Information'))
INTO :deptInfoBeginloc;

b. Locate the beginning of Education section (end of Department
Information):

EXEC SQL VALUES (POSSTR(:resume, 'Education'))
INTO :deptInfoEndLoc;

c. Obtain only the Department Information section by using SUBSTR:

EXEC SQL VALUES(SUBSTR(:resume, :deptInfoBeginLoc,
:deptInfoEndLoc - :deptInfoBeginLoc)) INTO :deptBuffer;

d. Append the Department Information section to the :buffer variable
EXEC SQL VALUES(:buffer || :deptBuffer) INTO :buffer;
Free the LOB locators resume and deptBuffer:
EXEC SQL FREE LOCATOR :resume, :deptBuffer;
Close the cursor:
EXEC SQL CLOSE cl;
End the program.

Chapter 6. Large Objects

169

Related concepts:

* ['Large Object Usage” on page 165

* ['Large Object Locators” on page 166|

Related tasks:

* “Connecting an Application to a Database” in the Application Development
Guide: Programming Client Applications

* “Ending an Application Program” in the Application Development Guide:
Programming Client Applications

* ["Deferring the Evaluation of LOB Expressions” on page 170|

Related samples:

e “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

» “dtlob.sqc -- How to use the LOB data type (C)”

» “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”
» “dtlob.sqC -- How to use the LOB data type (C++)”

* “dtLob.bas - Get/set Large Objects (LOBs)”

* “DtLob.java -- How to use LOB data type (JDBC)”

* “DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

* “lobeval.sqb -- Demonstrates how to use a Large Object (LOB) (IBM
COBOL)”

* “lobloc.sgb -- Demonstrates the use of LOB locators (IBM COBOL)”

Deferring the Evaluation of LOB Expressions

170

The bytes of a LOB value do not move until you assign a LOB expression to a
target destination. This means that a LOB value locator used with string
functions and operators can create an expression where the evaluation is
postponed until the time of assignment. This technique is known as deferring
the evaluation of a LOB expression.

Deferring evaluation gives DB2 an opportunity to increase LOB I/0O
performance. This occurs because the LOB function optimizer attempts to
transform the LOB expressions into alternative expressions. These alternative
expressions produce equivalent results and usually require fewer disk 1/Os.
The example uses embedded SQL in C.

Procedure:

To defer the evaluation of a LOB expression:
1. Declare the LOB locator host variables:

Programming Server Applications

EXEC SQL BEGIN DECLARE SECTION;
sq1int32 hv_start_deptinfo;
sqlint32 hv_start_educ;
sq1int32 hv_return_code;
SQL TYPE IS CLOB(5K) hv_new_section_buffer;
SQL TYPE IS CLOB_LOCATOR hv_doc_Tocatorl;
SQL TYPE IS CLOB_LOCATOR hv_doc_Tlocator2;
SQL TYPE IS CLOB_LOCATOR hv_doc_Tlocator3;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

In the host variable declaration section:

* hv_start_deptinfo, hv_return_code, and hv_start_educ will temporarily
hold LOB locator values.

* hv_new_section_buffer will contain the data extracted from the LOB.

* hv_doc_locatorl, hv_doc_locator2, and hv_doc_locator3 are LOB
locators.

* userid and passwd represent a userid and password combination, which
are needed for the application to connect to a database.

Connect the application to the database.
Fetch the LOB value into the host variable locator:

EXEC SQL SELECT resume INTO :hv_doc_locatorl FROM emp_resume
WHERE empno = '000130' AND resume_format = 'ascii';

Manipulate LOB data with locators. These five statements manipulate LOB
data without moving the actual data contained in the LOB field.

a. Use the POSSTR function to locate the start of the Department
Information section:

EXEC SQL VALUES (POSSTR(:hv_doc_Tlocatorl, 'Department Information'))
INTO :hv_start_deptinfo;

b. Use the POSSTR function to locate the start of the Education section:

EXEC SQL VALUES (POSSTR(:hv_doc_Tocatorl, 'Education'))
INTO :hv_start_educ;

c. Replace the Department Information section with nothing:

EXEC SQL VALUES (SUBSTR(:hv_doc_locatorl, 1, :hv_start_deptinfo -1)
|| SUBSTR (:hv_doc_locatorl, :hv_start educ))
INTO :hv_doc_locator2;

d. Move the Department Information section into the
hv_new_section_buffer :

EXEC SQL VALUES (SUBSTR(:hv_doc_locatorl, :hv_start_deptinfo,
:hv_start_educ -:hv_start_deptinfo)) INTO :hv_new_section_buffer;

e. Append the new section to the end. Effectively, this just moves the
Department Information section to the bottom of the resume.

Chapter 6. Large Objects 171

172

EXEC SQL VALUES (:hv_doc_locator? || :hv_new_section_buffer)
INTO :hv_doc_Tocator3;

5. Move LOB data to the target destination:

EXEC SQL INSERT INTO emp_resume
VALUES ('A00130', 'ascii', :hv_doc_locator3);

The evaluation of the LOB assigned to the target destination is postponed
until this statement. It is at this point that LOB value bytes finally move.

6. Free the LOB locators hv_doc_locatorl, hv_doc_locator2, and
hv_doc_locator3:

EXEC SQL FREE LOCATOR :hv_doc_locatorl, :hv_doc_locator2,
: hv_doc_locator3;

7. End the program.

In this example, a particular resume (empno = ‘000130") was sought from
within a table of resumes EMP_RESUME. The Department Information section
of the resume was copied, cut, and then appended to the end of the resume.
This new resume was then inserted into the EMP_RESUME table. The original
resume in this table was left unchanged.

Locators permitted the assembly and examination of the new resume without
actually moving or copying any bytes from the original resume. The
movement of bytes does not happen until the final assignment; that is, the
INSERT statement -- and then only at the server.

Related concepts:

* ["Large Object Usage” on page 165

* ["Large Object Locators” on page 166|

Related tasks:

* “Connecting an Application to a Database” in the Application Development
Guide: Programming Client Applications

* “Ending an Application Program” in the Application Development Guide:
Programming Client Applications

* ['Retrieving a LOB Value with a LOB Locator” on page 16§

Related samples:

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

* “dtlob.sqc -- How to use the LOB data type (C)”

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”
* “dtlob.sqC -- How to use the LOB data type (C++)”

» “dtLob.bas - Get/set Large Objects (LOBs)”

* “DtLob.java -- How to use LOB data type (JDBC)”

Programming Server Applications

* “DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

* “lobeval.sqb -- Demonstrates how to use a Large Object (LOB) (IBM
COBOL)”

Large Object File Reference Variables

LOB file reference variables facilitate the movement of LOB values from the
database server to a client application without going through the client
application’s memory. File reference variables are similar to host variables
except that they are used to transfer data to and from client files, and not to
and from memory buffers. With this approach, client applications do not have
to call utility routines to read and write files using host variables (which have
size restrictions) to carry out the movement of LOB data.

A file reference variable represents (rather than contains) the file, just as a
LOB locator represents (rather than contains) the LOB value. Database queries,
updates, and inserts may use file reference variables to store, or to retrieve,
single LOB column values.

File reference variables are used for direct file input and output for LOBs, and
can be defined in all host languages. Since they are not native data types, SQL
extensions are used and the precompilers generate the host language
constructs necessary to represent each variable.

A file reference variable has the following properties:

1. Data Type: BLOB, CLOB, or DBCLOB. This property is specified when the
variable is declared.

2. File name: The application program must specify this at run time. It is one
of:

* The complete path name of the file (which is advised).

* A relative file name. If a relative file name is provided, it is appended to
the current path of the client process. Within an application, a file
should only be referenced in one file reference variable.

3. File Name Length: The application program must specify this at run time.
It is the length of the file name (in bytes).

4. File Options: An application must assign one of a number of options to a
file reference variable before it makes use of that variable. Options are set
by an INTEGER value in a field in the file reference variable structure.
One of the file options must be specified for each file reference variable:

File option (by language) Direction Description

C: SQL_FILE_READ input This is a regular file that can be
COBOL: SQL-FILE-READ opened, read and closed.
FORTRAN: sql_file_read

Chapter 6. Large Objects 173

File option (by language) Direction Description

C: SQL_FILE_CREATE output Create a new file. If the file

COBOL: SQL-FILE-CREATE already exists, an error is

FORTRAN: sql_file_create returned.

C: SQL_FILE_OVERWRITE output If an existing file with the

COBOL: SQL-FILE-OVERWRITE specified name exists, it is

FORTRAN: sql_file_overwrite overwritten; otherwise, a new
file is created.

C: SQL_FILE_APPEND output If an existing file with the

COBOL: SQL-FILE-APPEND specified name exists, the output

FORTRAN: sql_file_append is appended to it; otherwise a
new file is created.

5. Data Length: This is unused on input. On output, the implementation sets
the data length (in bytes) to the length of the new data written to the file.

For normal host variables in an application program, when selecting a NULL
value into a host variable, the indicator variable is set to -1, signifying that the
value is NULL. In the case of file reference variables, however, the meaning of
indicator variables is slightly different. Since a file reference variable itself can
never be NULL, a negative indicator variable value indicates that the LOB
value represented by the file reference variable is NULL.

The file referenced by the file reference variable must be accessible from (but
not necessarily resident on) the system on which the program runs. For a
stored procedure, this would be the server.

In an Extended UNIX® Code (EUC) environment, the files to which DBCLOB
file reference variables point are assumed to contain valid EUC characters
appropriate for storage in a graphic column, and to never contain UCS-2
characters.

If a LOB file reference variable is used in an OPEN statement, the file
associated with the LOB file reference variable must not be deleted until the
cursor is closed.

Related concepts:
* ["Large Object Usage” on page 165

Related tasks:
¢ ["Writing Data from a CLOB Column to a Text File” on page 175
* ['Inserting Data from a Text File into a CLOB Column” on page 176|

Related samples:

174 Programming Server Applications

“dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

“dtlob.sqc -- How to use the LOB data type (C)”

“dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”

“dtlob.sqC -- How to use the LOB data type (C++)”

“dtLob.bas -- Get/set Large Objects (LOBs)”

“DtLob.java -- How to use LOB data type (JDBC)”

“DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

“lobfile.sqb -- Demonstrates the use of LOB file handles (IBM COBOL)”

Writing Data from a CLOB Column to a Text File

If you need access to data in a CLOB column outside of the database, write it
to a text file.

The example in the procedure uses embedded SQL in C. In this example, a
particular resume (empno = ‘000130") is SELECTed from a CLOB column and
put into a text file.

Procedure:

To write data from a CLOB column to a text file:

1.

Declare the CLOB FILE REFERENCE host variable:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB_FILE resume;
char userid[9];
char passwd[19];
short lobind;

EXEC SQL END DECLARE SECTION;

In the host variable declaration section:

* resume represents the file that will contain the data extracted from the
CLOB column.

* userid and passwd represent a userid and password combination, which
are needed for the application to connect to a database.

Connect the application to the database.
Set up the CLOB FILE REFERENCE host variable:

strcpy (resume.name, "RESUME.TXT");
resume.name_length = strlen("RESUME.TXT");
resume.file options = SQL_FILE_OVERWRITE;

In the path description provided in the strcpy function:

e RESUME.TXT is the name of the file whose data will be inserted into the
table.

Chapter 6. Large Objects 175

4. SELECT the data from the resume field in the CLOB column into the
specified text file.

EXEC SQL SELECT resume INTO :resume :lobind FROM emp_resume
WHERE resume_format="ascii' AND empno='000130";

5. End the program.

Related concepts:

* [“Large Object Locators” on page 166|

+ [“Large Object File Reference Variables” on page 173

Related tasks:

* “Connecting an Application to a Database” in the Application Development
Guide: Programming Client Applications

* “Ending an Application Program” in the Application Development Guide:
Programming Client Applications

* ["Inserting Data from a Text File into a CLOB Column” on page 176|

Related samples:

» “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

* “dtlob.sqc -- How to use the LOB data type (C)”

» “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”

» “dtlob.sqC -- How to use the LOB data type (C++)”

* “dtLob.bas -- Get/set Large Objects (LOBs)”

* “DtLob.java -- How to use LOB data type (JDBC)”

* “DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

* “lobfile.sqb -- Demonstrates the use of LOB file handles (IBM COBOL)”

Inserting Data from a Text File into a CLOB Column

176

If you need the database to process CLOB data that currently exists in a text
file, insert it into a CLOB column.

The example uses embedded SQL in C on a UNIX-based file system.
Procedure:

To insert data from a text file into a CLOB column:
1. Declare the CLOB FILE REFERENCE host variable:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB FILE hv_text file;
EXEC SQL END DECLARE SECTION;

Programming Server Applications

hv_text_file represents a file.
Connect the application to the database.
Set up the CLOB FILE REFERENCE host variable:

strcpy (hv_text_file.name, "/u/userid/dirname/filnam.1");
hv_text file.name length = strlen("/u/userid/dirname/filnam.1");
hv_text_file.file_options = SQL_FILE_READ;

In the path description provided in the strcpy function:

* userid represents the directory for one of your users.

* dirname represents a subdirectory belonging to “userid”.

* filnam.1 is the name of the file whose data will be inserted into the
table.

* clobtab is the name of the table with the CLOB data type.

Insert data from hv_text_file into the CLOB table.

EXEC SQL INSERT INTO CLOBTAB
VALUES (:hv_text _file);

5. End the program.

Related concepts:

+ [“Large Object Locators” on page 166|

+ [“Large Object File Reference Variables” on page 173

Related tasks:

“Connecting an Application to a Database” in the Application Development
Guide: Programming Client Applications

“Ending an Application Program” in the Application Development Guide:
Programming Client Applications

* [“Writing Data from a CLOB Column to a Text File” on page 175|

Related samples:

“dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

“dtlob.sqc -- How to use the LOB data type (C)”

“dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”

“dtlob.sqC -- How to use the LOB data type (C++)”

“dtLob.bas -- Get/set Large Objects (LOBs)”

“DtLob.java -- How to use LOB data type (JDBC)”

“DtLob.out -- HOW TO USE LOB DATA TYPE (JDBC)”

“lobfile.sqb -- Demonstrates the use of LOB file handles (IBM COBOL)”

Chapter 6. Large Objects 177

178 Programming Server Applications

Chapter 7. User-Defined Distinct Types

User-Defined Types .

User-Defined Distinct Types

Strong Typing in User-Defined Dlstmct
Types . o
Defining Dlstmct Types .

Creating Tables with Columns Based on
Distinct Types .

Dropping User-Defined Types

Defining Currency-Based Distinct Types
Defining a Distinct Type for Completed Job
Application Forms

Creating Tables to Track Internat10nal Sales
Creating a Table to Store Completed Job
Application Forms R
Manipulating Distinct Types .

. 179 Manipulating Distinct Types . . 189
. 179 Casting between Distinct Types . . 191
Performing Comparisons Involving
. 181 Distinct Types . . 192
. 182 Performing Comparlsons between
Distinct Types and Constants . . 193
. 184 Performing Assignments Involving
. 185 Distinct Types in Embedded SQL . 193
. 186 Performing Assignments Involving
Distinct Types in Dynamic SQL . . 194
. 187 Performing Assignments Involving
188 Different Distinct Types . . . 195
Performing UNION Operations on
. 189 Distinctly Typed Columns . . 196
. 189 Defining Sourced UDFs for Distinct Types 196

User-Defined Types

A user-defined type (UDT) is a data type that you derive from existing data

types, but is nevertheless considered to be separate and incompatible from

them. UDTs enable you to extend the built-in types already available in DB2®
and create your own customized data types.

There are two classifications of user-defined types:

* distinct type: shares a common representation with built-in data types.

* structured type: enables the representation of a sequence of named

attributes that each have a type. One structured type can be a subtype of

another structured type (called a supertype), defining a type hierarchy.

Related concepts:

* [“User-Defined Distinct Types” on page 179

* [‘User-Defined Structured Types” on page 200

Related tasks:
* [‘Defining Distinct Types” on page 182]

User-Defined Distinct Types

Distinct types are user-defined types that are based on existing DB2® built-in
data types. Internally, a distinct type shares its representation with an existing
type (the source type), but is considered to be a separate and incompatible

type.

© Copyright IBM Corp. 1993 - 2002 179

180

For example, distinct types can represent various currencies, such as
US_Dollar and Canadian_Dollar. Both of these types are represented internally
(and in your host language program) as the built-in type that you defined
these currencies on. For example, if you define both currencies as DECIMAL,
they are represented as decimal data types in the system.

DB2 also has built-in types for storing and manipulating large objects. Your
distinct type could be based on one of these large object (LOB) data types,
which you might want to use for something like an audio or video stream.
The following example illustrates the creation of a distinct type named
AUDIO:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB,
it is considered to be a separate type that is not comparable to a BLOB or to
any other type. This allows the creation of functions written specifically for
AUDIO and assures that these functions will not be applied to any other type.

There are several benefits associated with distinct types:

1. Extensibility: By defining new types, you can increase the set of types
provided by DB2 to support your applications.

2. Flexibility: You can specify any semantics and behavior for your new type
by using user-defined functions (UDFs) to augment the diversity of the
types available in the system.

3. Consistent behavior: Strong typing insures that your distinct types will
behave appropriately. It guarantees that only functions defined on your
distinct type can be applied to instances of the distinct type.

4. Encapsulation: The set of functions and operators that you can apply to
distinct types defines the behavior of your distinct types. This provides
flexibility in the implementation since running applications do not depend
on the internal representation that you choose for your type.

5. Performance: Distinct types are highly integrated into the database
manager. Because distinct types are internally represented the same way as
built-in data types, they share the same efficient code used to implement
built-in functions, comparison operators, indexes, etc. for built-in data

types.

Distinct types are identified by qualified identifiers. If the schema name is not
used to qualify the distinct type name when used in statements other than
CREATE DISTINCT TYPE, DROP DISTINCT TYPE, or COMMENT ON
DISTINCT TYPE, the SQL path is searched in sequence for the first schema
with a distinct type that matches.

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, LOB
types, or DATALINK are subject to the same restrictions as their source type.

Programming Server Applications

However, certain functions and operators of the source type can be explicitly
specified to apply to the distinct type by defining user-defined functions.
(These functions are sourced on functions defined on the source type of the
distinct type.) The comparison operators are automatically generated for
user-defined distinct types, except those using LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, or DATALINK as the source type. In
addition, functions are generated to support casting from the source type to
the distinct type, and from the distinct type to the source type.

Related concepts:

» ['Strong Typing in User-Defined Distinct Types” on page 181

* ['User-Defined Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182]

* [‘Creating Tables with Columns Based on Distinct Types” on page 184

.| ‘Manipulating Distinct Types” on page 189

Related samples:

* “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C)”

* “dtudt.sqc -- How to create, use, and drop user-defined distinct types (C)”
¢ “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C++)”

 “dtudt.sqC -- How to create, use, and drop user-defined distinct types
(C++)”

* “DtUdtjava -- How to create, use and drop user defined distinct types
(JDBC)”

* “DtUdt.out -- HOW TO CREATE, USE AND DROP (JDBC)”
* “DtUdt.out -- HOW TO CREATE, USE AND DROP (SQLJ)”

* “DtUdt.sqlj -- How to create, use and drop user defined distinct types
(SQL])//

Strong Typing in User-Defined Distinct Types

One of the most important concepts associated with distinct types is strong
typing. Strong typing guarantees that only functions and operators defined
explicitly on the distinct type can be applied to its instances.

Strong typing is important to ensure that the instances of your distinct types

are correct. For example, if you have defined a function to convert US dollars
to Canadian dollars according to the current exchange rate, you do not want

this same function to be used to convert euros to Canadian dollars because it
will certainly return the wrong amount.

Chapter 7. User-Defined Distinct Types 181

As a consequence of strong typing, DB2® does not allow you to write queries
that compare, for example, distinct type instances with instances of the source
type of the distinct type. For the same reason, DB2 will not let you apply
functions defined on other types to distinct types. If you want to compare
instances of distinct types with instances of another type, you have to cast the
instances of one or the other type. In the same sense, you have to cast the
distinct type instance to the type of the parameter of a function that is not
defined on a distinct type if you want to apply this function to a distinct type
instance.

Related concepts:

* ["User-Defined Distinct Types” on page 179

Related tasks:
* [‘Defining Distinct Types” on page 182]

* ['Creating Tables with Columns Based on Distinct Types” on page 184

Defining Distinct Types

182

A user-defined distinct type is a data type derived from an existing type, such
as an integer, decimal, or character type. When you create distinct types, DB2
generates cast functions to cast from the distinct type to the source type, and
to cast from the source type to the distinct type. These functions are essential
for the manipulation of distinct types in queries.

Instances of the same distinct type can be compared to each other, if the
WITH COMPARISONS clause is specified on the CREATE DISTINCT TYPE
statement (as in the example in the procedure). The WITH COMPARISONS
clause cannot be specified if the source data type is a large object, a
DATALINK, LONG VARCHAR, or LONG VARGRAPHIC type.

Prerequisites:

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

Restrictions:

The source type of the distinct type is the data type used by DB2 to internally
represent the distinct type. For this reason, it must be a built-in data type.
Previously defined distinct types cannot be used as source types of other

distinct types.

Procedure:

Programming Server Applications

To define a distinct type, issue the CREATE DISTINCT TYPE statement,
specifying a type name and the source type. For example, the following
statement defines a new distinct type called new_type, that contains
SMALLINT values:

CREATE DISTINCT TYPE new_type AS SMALLINT WITH COMPARISONS

Because the distinct type defined in the above statement is based on
SMALLINT, the WITH COMPARISONS parameters must be specified.

To further understand the application of user-defined distinct types, see the
following examples of distinct type definitions based on sample business
cases:

* Define currency-based distinct types.
* Define a distinct type for job applications.

Related concepts:

* [‘Strong Typing in User-Defined Distinct Types” on page 181]

« ['User-Defined Types” on page 179

+ [“User-Defined Distinct Types” on page 179

Related tasks:
* ["'Defining Currency-Based Distinct Types” on page 186

* [“Defining a Distinct Type for Completed Job Application Forms” on page|
187

* ["Manipulating Distinct Types” on page 189

Related reference:
* “CREATE DISTINCT TYPE statement” in the SQL Reference, Volume 2

Related samples:

* “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C)”

* “dtudt.sqc -- How to create, use, and drop user-defined distinct types (C)”
* “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C++)”

* “dtudt.sqC -- How to create, use, and drop user-defined distinct types
(C++)”

* “DtUdtjava -- How to create, use and drop user defined distinct types
(JDBC)”

* “DtUdt.out -- HOW TO CREATE, USE AND DROP (JDBC)”
* “DtUdt.out -- HOW TO CREATE, USE AND DROP (SQLJ)”

* “DtUdt.sqlj -- How to create, use and drop user defined distinct types
(SQL])//

Chapter 7. User-Defined Distinct Types 183

Creating Tables with Columns Based on Distinct Types

184

After you have defined distinct types, you can start creating tables with
columns based on distinct types.

Prerequisites:

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

For the list of privileges required to create tables, see the CREATE TABLE
statement.

Procedure:

To create a table with columns based on distinct types:
1. Define a distinct type:
CREATE DISTINCT TYPE t_educ AS SMALLINT WITH COMPARISONS
2. Create the table, naming the distinct type, T_EDUC as a column type.

CREATE TABLE employee
(empno CHAR(6) NOT NULL,
firstnme VARCHAR(12) NOT NULL,
lastname VARCHAR(15) NOT NULL,
workdept CHAR(3),
phoneno CHAR(4),
photo BLOB(10M) NOT NULL,
edlevel T_EDUC)
IN RESOURCE

To further understand the application of tables, see the following examples of
table creation based on sample business cases:

* Create tables to track international sales.
* Create a table to store filled job application forms.

Related concepts:

* [‘Strong Typing in User-Defined Distinct Types” on page 181

* ["User-Defined Types” on page 179

* ['User-Defined Distinct Types” on page 179

Related tasks:
* ['Creating Tables to Track International Sales” on page 188|

* ['Creating a Table to Store Completed Job Application Forms” on page 189)

¢ ['Defining Distinct Types” on page 182]

* ["Manipulating Distinct Types” on page 189

Programming Server Applications

* ['Defining Currency-Based Distinct Types” on page 186]

* ['Defining a Distinct Type for Completed Job Application Forms” on page|
187

Related reference:
¢ “CREATE DISTINCT TYPE statement” in the SQL Reference, Volume 2
* “CREATE TABLE statement” in the SQL Reference, Volume 2

Dropping User-Defined Types

You can drop a user-defined type (UDT) using the DROP statement. You
cannot drop a UDT if it is used:

* In a column definition for an existing table or view.
* As the type of an existing typed table or typed view.
* As the supertype of another structured type.

The database manager attempts to drop every routine that is dependent on
this UDT. A routine cannot be dropped if a view, trigger, table check
constraint, or another routine is dependent on it. If DB2 cannot drop a
dependent routine, DB2 does not drop the UDT. Dropping a UDT invalidates
any packages or cached dynamic SQL statements that used it.

If you have created a transform for a UDT, and you plan to drop that UDT,
consider dropping the associated transform. To drop a transform, issue a
DROP TRANSFORM statement. Note that you can only drop user-defined
transforms. You cannot drop built-in transforms or their associated group
definitions.

Related concepts:

* ["User-Defined Types” on page 179

« [‘User-Defined Distinct Types” on page 179

* ["User-Defined Structured Types” on page 200|

* ['Transform Functions and Transform Groups” on page 246

Related tasks:
* [‘Defining Distinct Types” on page 182]

* ['Defining Structured Types” on page 201|

Related reference:
* “DROP statement” in the SQL Reference, Volume 2

Related samples:

Chapter 7. User-Defined Distinct Types 185

* “dtstruct.out -- Sample C++ program : dtstruct.sqC (C++)”

» “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

e “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C++)”

* “dtudt.sqC - How to create, use, and drop user-defined distinct types
(C++)”

* “dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C)”
» “dtudt.sqc -- How to create, use, and drop user-defined distinct types (C)”

» “DtUdtjava -- How to create, use and drop user defined distinct types
(JDBC)”

« “DtUdt.out - HOW TO CREATE, USE AND DROP (JDBC)”
« “DtUdt.out -- HOW TO CREATE, USE AND DROP (SQLJ)”

* “DtUdt.sqlj -- How to create, use and drop user defined distinct types
(SQL))”

Defining Currency-Based Distinct Types

186

Suppose you are writing applications that need to handle different currencies.
Given that conversions are necessary whenever you want to compare values
of different currencies, you want to ensure that DB2 does not allow these
currencies to be compared or manipulated directly with one another. Because
distinct types are only compatible with themselves, you must define one for
each currency that you need to represent.

Prerequisites:

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

Procedure:

To define distinct types representing the euro and the American and Canadian
currencies, issue the following statements:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE CANADIAN DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE EURO AS DECIMAL (9,3) WITH COMPARISONS

Note that you have to specify the WITH COMPARISONS clause because
comparison operators are supported on DECIMAL (9,3).

Related concepts:

* ['User-Defined Distinct Types” on page 179

Related tasks:

Programming Server Applications

* ['Creating Tables with Columns Based on Distinct Types” on page 184

* ['Defining a Distinct Type for Completed Job Application Forms” on page|
187

* ['Creating Tables to Track International Sales” on page 188|

Related reference:
* “CREATE DISTINCT TYPE statement” in the SQL Reference, Volume 2

Defining a Distinct Type for Completed Job Application Forms

Suppose you would like to keep incoming job application forms in a DB2
table and be able to use functions to extract the information from these forms.
You can define a distinct type to represent the forms in tables and as
parameters to functions.

Prerequisites:

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

Procedure:

To define a distinct type representing the completed job application forms,
issue the following statement:

CREATE DISTINCT TYPE PERSONNEL.APPLICATION_FORM AS CLOB(32K)

Because DB2 does not support comparisons on CLOBs, you cannot specify the
WITH COMPARISONS clause. The PERSONNEL schema is specified in the
above statement because the schema intended to contain all the distinct types
and UDFs dealing with application forms.

Related concepts:

* [‘User-Defined Distinct Types” on page 179

Related tasks:
* ['Creating Tables with Columns Based on Distinct Types” on page 184

* ['Defining Currency-Based Distinct Types” on page 186]

* ['Creating a Table to Store Completed Job Application Forms” on page 189|

Chapter 7. User-Defined Distinct Types 187

Creating Tables to Track International Sales

Suppose you want to define tables to track your company’s sales in different
regions. You can create tables using the applicable currency distinct type as
the column type for a given region’s total sales revenue.

Prerequisites:

For the list of privileges required to create tables, see the CREATE TABLE
statement.

Procedure:

To create tables to track international sales:
1. Create currency-based distinct types.
2. Issue the following CREATE TABLE statements:

CREATE TABLE US_SALES
(PRODUCT _ITEM INTEGER,

MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL US_DOLLAR)

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,

MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL CANADIAN_DOLLAR)

CREATE TABLE GERMAN_SALES
(PRODUCT _ITEM INTEGER,

MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL EURO)

Related concepts:

+ ["User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182]

* ['Defining Currency-Based Distinct Types” on page 186

* ['Creating a Table to Store Completed Job Application Forms” on page 189)

188 Programming Server Applications

Creating a Table to Store Completed Job Application Forms

Suppose you need to define a table where you keep the forms filled out by
applicants. You can create a table using the distinct type
PERSONNEL.APPLICATION_FORM as a column type to contain the
completed forms.

Prerequisites:

For the list of privileges required to create tables, see the CREATE TABLE
statement.

Procedure:

To create a table to contain completed job application forms:
1. Create a distinct type for a job application form.
2. Issue the following CREATE TABLE statement:

CREATE TABLE APPLICATIONS

(1D SYSIBM. INTEGER,

NAME VARCHAR (30),

APPLICATION DATE SYSIBM.DATE,

FORM PERSONNEL.APPLICATION_FORM)

The distinct type name is fully qualified because its qualifier is not the same
as the authorization ID and the default function path was not changed.
Remember that whenever type and function names are not fully qualified,
DB2 searches through the schemas listed in the current function path and
looks for a type or function name matching the given unqualified name.
Because SYSIBM is always considered (if it has been omitted) in the current
function path, you can omit the qualification of built-in data types.

Related concepts:

* ["User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182|

* [‘Defining a Distinct Type for Completed Job Application Forms” on page|
187

* ['Creating Tables to Track International Sales” on page 188|

Manipulating Distinct Types

Manipulating Distinct Types

Once you define distinct types and create tables based upon them, you can
begin manipulating actual distinctly typed values.

Chapter 7. User-Defined Distinct Types 189

190

Procedure:

To implement various kinds of distinct type manipulation:

Cast between distinct types.

Perform comparisons between distinct types.

Perform comparisons between distinct types and constants.
Define sourced UDFs for distinct types.

Perform assignments involving distinct types.

Perform assignments involving distinct types in dynamic SQL.
Perform assignments involving different distinct types.
Perform UNION operations on distinctly typed columns.

Related concepts:

[‘User-Defined Distinct Types” on page 179

Related tasks:

[‘Casting between Distinct Types” on page 191|

[‘Performing Comparisons Involving Distinct Types” on page 192|

‘Performing Comparisons between Distinct Types and Constants” on page]
193

[‘Defining Sourced UDFs for Distinct Types” on page 196

‘Performing Assienments Involving Distinct Types in Embedded SQL” on

page 193|

‘Performing Assigenments Involving Distinct Types in Dynamic SQL” on|

page 194_L|

[‘Performing Assienments Involving Different Distinct Types” on page 195

‘Performing UNION Operations on Distinctly Typed Columns” on page]
196

[‘Defining Distinct Types” on page 182]

[‘Creating Tables with Columns Based on Distinct Types” on page 184]

Related samples:

“dtudt.c -- How to create, use, and drop user-defined distinct types. (CLI)”
“dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C)”

“dtudt.sqc -- How to create, use, and drop user-defined distinct types (C)”
“dtudt.out -- HOW TO CREATE/USE/DROP UDTs (C++)”

“dtudt.sqC -- How to create, use, and drop user-defined distinct types
(C++)”

“DtUdtjava -- How to create, use and drop user defined distinct types
(JDBC)”

Programming Server Applications

* “DtUdt.out -- HOW TO CREATE, USE AND DROP (JDBC)”
* “DtUdt.out -- HOW TO CREATE, USE AND DROP (SQLJ)”

+ “DtUdt.sqlj -- How to create, use and drop user defined distinct types
(SQLj)”

Casting between Distinct Types

Suppose you want to define a UDF that converts another currency into U.S.
dollars. For the purposes of this example, you can obtain the current exchange
rate from a table such as the following:

CREATE TABLE
exchange_rates(source CHAR(3), target CHAR(3), rate DECIMAL(9,3))

The following function can be used to directly access the values in the
exchange_rates table:
CREATE FUNCTION exchange rate(src VARCHAR(3), trg VARCHAR(3))

RETURNS DECIMAL(9,3)

RETURN SELECT rate FROM exchange_rates
WHERE source = src AND target = trg

The currency exchange rates in the above function are based on the
DECIMAL type, not distinct types. To represent some different currencies, use
the following distinct type definitions:

CREATE DISTINCT TYPE CANADIAN DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE EURO AS DECIMAL(9,3) WITH COMPARISONS
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS

To create a UDF that converts CANADIAN_DOLLAR or EURO to
US_DOLLAR you need to cast the values involved. Note that the
exchange_rate function returns an exchange rate as a DECIMAL. For example,
a function that converts values of CANADIAN_DOLLAR to US_DOLLAR
performs the following steps:

e cast the CANADIAN_DOLLAR value to DECIMAL

* get the exchange rate for converting the Canadian dollar to the U.S. dollar

from the exchange_rate function, which returns the exchange rate as a
DECIMAL value

* multiply the Canadian dollar DECIMAL value to the DECIMAL exchange
rate
e cast this DECIMAL value to US_DOLLAR

e return the US_DOLLAR value

The following are instances of the US_DOLLAR function (for both the
Canadian dollar and the euro), which follow the above steps.

CREATE FUNCTION US_DOLLAR(amount CANADIAN_DOLLAR)
RETURNS US_DOLLAR
RETURN US_DOLLAR(DECIMAL (amount) * exchange rate('CAN', 'USD'))

Chapter 7. User-Defined Distinct Types 191

CREATE FUNCTION US_DOLLAR(amount EURO)
RETURNS US_DOLLAR
RETURN US_DOLLAR(DECIMAL(amount) * exchange rate('EUR', 'USD'))

Related concepts:

* ['User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182]

* ['Creating Tables with Columns Based on Distinct Types” on page 184

* ["Defining Sourced UDFs for Distinct Types” on page 19§

Performing Comparisons Involving Distinct Types

Suppose you want to know which products sold more in the United States
than in Canada and Germany for the month of July, 1999 (7/1999):

SELECT US.PRODUCT_ITEM, US.TOTAL
FROM US_SALES AS US, CANADIAN_SALES AS CDN, GERMAN_SALES AS GERMAN
WHERE US.PRODUCT_ITEM = CDN.PRODUCT_ITEM
AND US.PRODUCT_ITEM = GERMAN.PRODUCT_ITEM
AND US.TOTAL > US_DOLLAR (CDN.TOTAL)
AND US.TOTAL > US_DOLLAR (GERMAN.TOTAL)
AND US.MONTH = 7
AND US.YEAR 1999
AND CDN.MONTH = 7
AND CDN.YEAR = 1999
AND GERMAN.MONTH = 7
AND GERMAN.YEAR 1999

n un v v

Because you cannot directly compare U.S. dollars with Canadian dollars or
euros, use the UDF to cast the amount in Canadian dollars to US dollars, and
the UDF to cast the amount in euros to U.S. dollars. You should not cast them
all to DECIMAL and compare the converted DECIMAL values because the
amounts are not monetarily comparable. That is, the amounts are not in the
same currency.

Related concepts:

* ["User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182]

* ['"Creating Tables with Columns Based on Distinct Types” on page 184]

* ['Casting between Distinct Types” on page 191|

192 Programming Server Applications

Performing Comparisons between Distinct Types and Constants

Suppose you want to know which products sold more than U.S. $100 000.00 in
the United States in the month of July, 1999 (7/99).

SELECT PRODUCT_ITEM
FROM US_SALES
WHERE TOTAL > US_DOLLAR (100000)
AND month = 7
AND year 1999

Because you cannot compare US dollars with instances of the source type of
U.S. dollars (that is, DECIMAL) directly, you have used the cast function
provided by DB2 to cast from DECIMAL to U.S. dollars. You can also use the
other cast function provided by DB2 (that is, the one to cast from U.S. dollars
to DECIMAL) and cast the column total to DECIMAL. Either way you decide
to cast, from or to the distinct type, you can use the cast specification notation
to perform the casting, or the functional notation. That is, you could have
written the above query as:
SELECT PRODUCT_ITEM
FROM US_SALES
WHERE TOTAL

AND MONTH
AND YEAR

\%

CAST (100000 AS us_dollar)
7
1999

Related concepts:

* [“User-Defined Distinct Types” on page 179

Related tasks:
* ["Defining Distinct Types” on page 182|

* [‘Creating Tables with Columns Based on Distinct Types” on page 184

* [‘Casting between Distinct Types” on page 191]

Performing Assignments Involving Distinct Types in Embedded SQL

Suppose you want to store the job application form completed by a new
applicant into the database. You can define a host variable containing the
character string value used to represent the completed form:

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB(32K) hv_form;
EXEC SQL END DECLARE SECTION;

/* Code to fill hv_form */

INSERT INTO APPLICATIONS
VALUES (134523, 'Peter Holland', CURRENT DATE, :hv_form)

Chapter 7. User-Defined Distinct Types 193

194

You do not explicitly invoke the cast function to convert the host variable to
the distinct type personal.application_form because DB2 lets you assign
instances of the source type of a distinct type to targets having that distinct

type.

Related concepts:

* ['User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182

* ['Creating Tables with Columns Based on Distinct Types” on page 184

* ['Defining Sourced UDFs for Distinct Types” on page 196

Performing Assignments Involving Distinct Types in Dynamic SQL

Suppose you want to store the job application form completed by a new
applicant into the database. You have defined a host variable containing the
character string value used to represent the completed form. To use dynamic
SQL, you can use parameter markers as follows:
EXEC SQL BEGIN DECLARE SECTION;
long id;
char name[30];
SQL TYPE IS CLOB(32K) form;
char command[80];
EXEC SQL END DECLARE SECTION;

/* Code to fill host variables */

strcpy (command, "INSERT INTO APPLICATIONS VALUES");
strcat(command,"(?, ?, CURRENT DATE, CAST (? AS CLOB(32K)))");

EXEC SQL PREPARE APP_INSERT FROM :command;
EXEC SQL EXECUTE APP_INSERT USING :id, :name, :form;

This makes use of DB2’s cast specification to tell DB2 that the type of the
parameter marker is CLOB(32K), a type that is assignable to the distinct type
column. Remember that you cannot declare a host variable of a distinct type,
since host languages do not support distinct types. Therefore, you cannot
specify that the type of a parameter marker is a distinct type.

Related concepts:

* ["User-Defined Distinct Types” on page 179

Related tasks:
* ["Defining Distinct Types” on page 182]

* ['Creating Tables with Columns Based on Distinct Types” on page 184

Programming Server Applications

Performing Assignments Involving Different Distinct Types

Suppose you have defined two sourced UDFs on the built-in SUM function to
support SUM on U.S. and Canadian dollars:

CREATE FUNCTION SUM (CANADIAN DOLLAR)
RETURNS CANADIAN DOLLAR
SOURCE SYSIBM.SUM (DECIMAL())

CREATE FUNCTION SUM (US_DOLLAR)
RETURNS US_DOLLAR
SOURCE SYSIBM.SUM (DECIMAL())

Now suppose your supervisor requests that you maintain the annual total
sales in U.S. dollars of each product and in each region, in separate tables:

CREATE TABLE US_SALES 94
(PRODUCT _ITEM INTEGER,
TOTAL US_DOLLAR)

CREATE TABLE GERMAN_SALES_94
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR)

CREATE TABLE CANADIAN_SALES 94
(PRODUCT _ITEM INTEGER,
TOTAL US_DOLLAR)

INSERT INTO US_SALES 94
SELECT PRODUCT ITEM, SUM (TOTAL)
FROM US_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

INSERT INTO GERMAN_SALES 94
SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))
FROM GERMAN_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

INSERT INTO CANADIAN SALES 94
SELECT PRODUCT ITEM, US_DOLLAR (SUM (TOTAL))
FROM CANADIAN_ SALES
WHERE YEAR = 1994
GROUP BY PRODUCT ITEM

You explicitly convert the amounts in Canadian dollars and euros to US
dollars since different distinct types are not directly assignable to each other.
You cannot use the cast specification syntax because distinct types can only be
cast to their own source type.

Related concepts:

« ["User-Defined Distinct Types” on page 179

Chapter 7. User-Defined Distinct Types 195

Related tasks:
* ['Defining Distinct Types” on page 182]

* ['"Creating Tables with Columns Based on Distinct Types” on page 184]

Performing UNION Operations on Distinctly Typed Columns

Suppose you would like to provide your American users with a view
containing all the sales of every product of your company:
CREATE VIEW ALL SALES AS
SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL
FROM US_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)
FROM CANADIAN_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)
FROM GERMAN_SALES

You cast Canadian dollars to US dollars and euros to US dollars because
distinct types are union compatible only with the same distinct type. The
above example makes use of the UDFs defined in Casting between Distinct
Types to cast between the currencies, which results in the use of functional
notation instead of a cast specification.

Related concepts:

* ['User-Defined Distinct Types” on page 179

Related tasks:
* ['Defining Distinct Types” on page 182

* ["Creating Tables with Columns Based on Distinct Types” on page 184

+ ["Casting between Distinct Types” on page 191|

Defining Sourced UDFs for Distinct Types

Suppose you have defined a sourced UDF on the built-in SUM function to
support SUM on euros:
CREATE FUNCTION SUM (EUROS)

RETURNS EUROS
SOURCE SYSIBM.SUM (DECIMAL())

You want to know the total of sales in Germany for each product in the year
of 1994. You would like to obtain the total sales in US dollars:
SELECT PRODUCT ITEM, US_DOLLAR (SUM (TOTAL))
FROM GERMAN_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

196 Programming Server Applications

You could not write SUM (us_dollar (total)), unless you had defined a SUM
function on US dollar in a manner similar to the above.

Related concepts:

* ["User-Defined Distinct Types” on page 179

Related tasks:
* ["Defining Distinct Types” on page 182]

* ['Creating Tables with Columns Based on Distinct Types” on page 184]
s [‘Performing Assignments Involving Distinct Types in Embedded SQL” on|

page 193|

Chapter 7. User-Defined Distinct Types 197

198 Programming Server Applications

Chapter 8. User-Defined Structured Types

User-Defined Structured Types 200
Defining Structured Types 20
Storing Instances of Structured Types ... 202
Instantiability in Structured Types 203
Structured Type Hierarchies 203
Creating a Structured Type H1erarchy .. 204
Defining Behavior for Structured Types . . 206
Dynamic Dispatch of Methods 207
System-Generated Routines for Structured
Types. 209
Comparison and Castmg Functrons for
Structured Types 209
Constructor Functions for Structured
Types. . . . 210

Mutator Methods for Structured Types 210
Observer Methods for Structured Types 211

Typed Tableso.21n
Typed Tables21
Creating Typed Tables212
Dropping Typed Tables.216
Substitutability in Typed Tables 217
Storing Objects in Typed Table Rows . . 218
Defining System—Generated Object
Identifiers 220
Defining Constramts on Ob]ect Ident1f1er
Columns.222
Reference Types223

Reference Types 223
Relationships between Ob]ects in

Typed Tables 224
Defining Semantic Relat1onsh1ps w1th
References 225
Referential Integrity versus Scoped
References228

Typed Views228
Typed Views . . Coe ... L0228
Creating Typed Vrews oo 229
Altering Typed Views 231
Dropping Typed Views 232

Querying Typed Tables and Typed V1ews 232
Issuing Queries to Dereference References 232
Returning Objects of a Particular Type

Using ONLY 234
Restricting Returned Types Us1ng a TYPE
Predicate. 235

© Copyright IBM Corp. 1993 - 2002

Returning All Possible Types Using
OUTER . .

Structured Types as Column Types .

Storing Structured Type Objects in Table
Columns.
Inserting Structured Type Attr1butes Into
Columns. .
Defining and Altermg Tables w1th
Structured Type Columns .
Defining Types with Structured Type
Attributes
Inserting Rows That Contam Structured
Type Values.
Modifying Structured Type Values in
Columns.
Retrieving and Modrfymg Structured
Type Values in Columns
Retrieving Structured Type Attrlbutes
Accessing the Attributes of Subtypes
Modifying Structured Type Attributes
Returning Information About a
Structured Type

Transform Functions and Transform Groups

Transform Functions and Transform
Groups
Recommendatrons for Nammg Transform
Groups . .
Specification of Transform Groups .
Specification of Transform Groups .
Specifying Transform Groups for
External Routines .
Specifying Transform Groups for
Dynamic SQL .
Specifying Transform Groups for Statrc
SQL .

Creating the Mapping to the Host Language
Program .

Host Language Program Mappmgs wrth
Transform Functions .

Function Transforms .

Implementing Function Transforms Usmg
SQL-bodied Routines . .
Passing Structured Type Parameters to
External Routines .

Client Transforms.

. 236
. 237

. 237

. 240

. 240

. 241

. 242

. 243

. 243

244
245
245

. 246

246

. 246
. 248
. 249
. 249
. 250
. 250
. 251
. 252

. 252
. 253

. 255

. 257
. 259

199

Implementing Client Transforms Using Transform Function Requirements . . . 264

External UDFs. 202 Retrieving Subtype Data from DB2 . . . 266
Implementing Client Transforms for Returning Subtype Data to DB2 269
Binding in from a Client Using External Structured Type Host Variables 273
UDFs. 263 Declaring Structured Type Host Var1ab1es 273
Data Conversion C0n51derat10ns .. . 263 Describing a Structured Type 274

User-Defined Structured Types

A structured type is a user-defined data type containing one or more named
attributes, each of which has a data type. Attributes are properties that
describe an instance of a type. A geometric shape, for example, might have
attributes such as its list of Cartesian coordinates. A person might have
attributes of name, address, and so on. A department might have attributes of
a name or some other kind of ID.

A structured type also includes a set of method specifications. Methods enable
you to define behaviors for structured types. Like user-defined functions
(UDFs), methods are routines that extend SQL. In the case of methods,
however, the behavior is integrated solely with a particular structured type.

A structured type may be used as the type of a table, view, or column. When
used as the type for a table or view, that table or view is known as a typed
table or typed view respectively. For typed tables and typed views, the names
and data types of the attributes of the structured type become the names and
data types of the columns of the typed table or typed view. Rows of the typed
table or typed view can be thought of as a representation of instances of the
structured type.

A type cannot be dropped when certain other objects use the type, either
directly or indirectly. For example, a type cannot be dropped if a table or view

column makes a direct or indirect use of the type.

Related concepts:

+ ["User-Defined Types” on page 179

* ['Typed Tables” on page 211|

* ["Typed Views” on page 228

Related tasks:
* ["Defining Structured Types” on page 201

* ['Storing Instances of Structured Types” on page 202

* ["Defining Behavior for Structured Types” on page 206|

* ["'Dropping User-Defined Types” on page 185|

Related samples:

200 Programming Server Applications

 “dtstruct.out -- Sample C++ program : dtstruct.sqC (C++)”

¢ “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

Defining Structured Types

A structured type is a user-defined type that contains one or more attributes,
each of which has a name and a data type of its own. A structured type can
serve as the type of a table or view in which each column of the table derives
its name and data type from one of the attributes of the structured type. A
structured type can also serve as a type of a column or a type for an
argument to a routine.

Prerequisites:

For the list of privileges required to define structured types, see the CREATE
TYPE statement.

Procedure:

To define a structured type to represent a person, with age and address
attributes, issue the following statement:
CREATE TYPE Person_t AS
(Name VARCHAR(20),
Age INT,
Address Address_t)
INSTANTIABLE
REF USING VARCHAR(13) FOR BIT DATA
MODE DB2SQL;

Unlike distinct types, the attributes of structured types can be composed of
types other than the built-in DB2 data types. The above type declaration
includes an attribute called Address whose source type is another structured
type, Address_t.

Related concepts:

* ["User-Defined Distinct Types” on page 179

* [‘User-Defined Structured Types” on page 200

e [‘Structured Type Hierarchies” on page 203|

Related tasks:
* [‘Storing Instances of Structured Types” on page 202

* [‘Creating a Structured Type Hierarchy” on page 204|

* ["'Dropping User-Defined Types” on page 185|

Chapter 8. User-Defined Structured Types 201

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Related samples:
» “dtstruct.out -- Sample C++ program : dtstruct.sqC (C++)”

* “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

Storing Instances of Structured Types

A structured type instance can be stored in the database in two ways:

e As a row in a table, in which each column of the table is an attribute of the
instance of the type. If you need to refer to an instance from other tables,
you must use typed tables. To store objects as rows in a table, the table is
defined with the structured type, rather than by specifying individual
columns in the table definition:

CREATE TABLE Person OF Person_t

Each column in the table derives its name and data type from one of the
attributes of the indicated structured type. Such tables are known as typed
tables.

* As a value in a column. To store objects in table columns, the column is
defined using the structured type as its type. The following statement
creates a Properties table that has a structured type Address that is of the
Address_t structured type:

CREATE TABLE Properties
(ParcelNum INT,

Photo BLOB(2K),
Address Address_t)

Related concepts:

* ['User-Defined Structured Types” on page 200

* ['Typed Tables” on page 211|

Related tasks:
* ['Storing Obijects in Typed Table Rows” on page 218

* ['Storing Structured Type Objects in Table Columns” on page 237

202 Programming Server Applications

Instantiability in Structured Types

Types can also be defined to be INSTANTIABLE or NOT INSTANTIABLE. By
default, types are instantiable, which means that an instance of that object can
be created. Noninstantiable types, on the other hand, serve as models
intended for further refinement in the type hierarchy. For example, if you
define Person_t using the NOT INSTANTIABLE clause, then you cannot store
any instances of a person in the database and you cannot create a table or
view using Person_t. Instead, you can only store instances of Employee_t or
other subtypes of Person_t that you define.

Related concepts:

* ['User-Defined Structured Types” on page 200

Related tasks:
* ['Defining Structured Types” on page 201

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Structured Type Hierarchies

It is certainly possible to model objects such as people using traditional
relational tables and columns. However, structured types offer an additional
property of inheritance. That is, a structured type can have subtypes that reuse
all of its attributes and contain additional attributes specific to the subtype.
The original type is the supertype. For example, the structured type Person_t
might contain attributes for Name, Age, and Address. A subtype of Person_t
might be EmpToyee_t that contains all of the attributes Name, Age, and Address
and, in addition, contains attributes for SerialNum, Salary, and BusinessUnit.

Person_t (Name, Age, Address)
| -)

-

Employee_t (SerialNum, Salary, Dept)

Figure 1. Structured type Employee_t inherits attributes from supertype Person_t

A set of subtypes based (at some level) on the same supertype is known as a
type hierarchy. For example, a data model may need to represent a special

Chapter 8. User-Defined Structured Types 203

type of employee called a manager. Managers have more attributes than
employees who are not managers. The Manager_t type inherits the attributes
defined for an employee, but also is defined with some additional attributes
of its own, such as a special bonus attribute that is only available to
managers.

The following figure presents an illustration of the various subtypes that
might be derived from person and employee types:

BusinessUnit_t

Person_t

Employee_t Student_t

Manager_t Architect_t

Figure 2. Type hierarchies (BusinessUnit_t and Person_t)

In the person type Person_t is the root type of the hierarchy. Person_t
is also the supertype of the types below it--in this case, the type named

Employee_t and the type named Student_t. The relationships among subtypes
and supertypes are transitive; in other words, the relationship between
subtype and supertype exists throughout the entire type hierarchy. So,
Person_t is also a supertype of types Manager_t and Architect_t.

The department type, BusinessUnit_t is considered a trivial type hierarchy. It
is the root of a hierarchy with no subtypes.

Related concepts:

* ["User-Defined Structured Types” on page 200|

Related tasks:
* ["Defining Structured Types” on page 201

* [‘Creating a Structured Type Hierarchy” on page 204

Creating a Structured Type Hierarchy

The following figure presents an illustration of a structured type hierarchy:

204 Programming Server Applications

BusinessUnit_t

Person_t

\ |
Employee_t Student_t

Manager_t Architect_t

Figure 3. Type hierarchies (BusinessUnit_t and Person_t)

To create the BusinessUnit_t type, issue the following CREATE TYPE SQL
statement:

CREATE TYPE BusinessUnit_t AS
(Name VARCHAR(20),
Headcount INT)

MODE DB2SQL;

To create the Person_t type hierarchy, issue the following SQL statements:

CREATE TYPE Person_t AS
(Name VARCHAR(20),
Age INT,
Address Address_t)
REF USING VARCHAR(13) FOR BIT DATA
MODE DB2SQL;

CREATE TYPE Employee_t UNDER Person_t AS
(SerialNum INT,
Salary DECIMAL (9,2),
Dept REF(BusinessUnit_t))
MODE DB2SQL;

CREATE TYPE Student_t UNDER Person_t AS
(SerialNum CHAR(6),
GPA DOUBLE)
MODE DB2SQL;

CREATE TYPE Manager_t UNDER Employee t AS
(Bonus DECIMAL (7,2))
MODE DB2SQL;

CREATE TYPE Architect_t UNDER Employee t AS
(StockOption INTEGER)
MODE DB2SQL;

Person_t has three attributes: Name, Age and Address. Its two subtypes,

Employee t and Student_t, each inherit the attributes of Person_t and also
have several additional attributes that are specific to their particular types. For

Chapter 8. User-Defined Structured Types 205

example, although both employees and students have serial numbers, the
format used for student serial numbers is different from the format used for
employee serial numbers.

Finally, Manager_t and Architect_t are both subtypes of Employee_t; they
inherit all the attributes of Employee_t and extend them further as appropriate
for their types. Thus, an instance of type Manager_t will have a total of seven
attributes: Name, Age, Address, SerialNum, Salary, Dept, and Bonus.

Related concepts:

* [“User-Defined Structured Types” on page 200|

* [‘Structured Type Hierarchies” on page 203)|

Related tasks:
* ['Defining Structured Types” on page 201

* ['Creating Typed Tables” on page 212

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Related samples:
» “dtstruct.out -- Sample C++ program : dtstruct.sqC (C++)”

* “dtstruct.sqC -- Create, use, drop a hierarchy of structured types and typed
tables (C++)”

Defining Behavior for Structured Types

206

To define behaviors for structured types, you can create user-defined methods.
You cannot create methods for distinct types. Creating a method is similar to
creating a function, with the exception that methods are created specifically
for a type, so that the type and its behavior are tightly integrated.

The method specification must be associated with the type before you issue
the CREATE METHOD statement. The following statement adds the method
specification for a method called calc_bonus to the Employee_t type:

ALTER TYPE Employee_t
ADD METHOD calc_bonus (rate DOUBLE)
RETURNS DECIMAL(7,2)
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC;

Programming Server Applications

Once you have associated the method specification with the type, you can
define the behavior for the type by creating the method as either an external
method or an SQL-bodied method, according to the method specification. For
example, the following statement registers an SQL method called calc_bonus
that resides in the same schema as the type Employee_t:
CREATE METHOD calc_bonus (rate DOUBLE)

RETURNS DECIMAL(7,2)

FOR Employee_t

RETURN SELF..salary = rate;

You can create as many methods named calc_bonus as you like, as long as
they have different numbers or types of parameters, or are defined for types
in different type hierarchies. In other words, you cannot create another
method named calc_bonus for Architect_t that has the same parameter types
and same number of parameters.

Related concepts:
* [User-Defined Structured Types” on page 20!]
* ["Dynamic Dispatch of Methods” on page 207]

Related tasks:
* [“Defining Structured Types” on page 201

Related reference:

¢ “ALTER TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE TABLE statement” in the SQL Reference, Volume 2

¢ “CREATE METHOD statement” in the SQL Reference, Volume 2

Dynamic Dispatch of Methods

The behavior for a structured type is represented by its methods. These
methods can only be invoked against instances of their structured type. When
a subtype is created, among the attributes it inherits are the methods defined
for the supertype. Hence, a supertype’s methods can also be run against any
instances of its subtypes.

If you do not want a method defined for a supertype to be used for a
particular subtype, you can override the method. To override a method means
to reimplement it specifically for a given subtype. This facilitates the dynamic
dispatch of methods (also known as polymorphism), where an application
will execute the most specific method depending on the type of the structured
type instance (for example, where it is situated in the structured type
hierarchy).

Chapter 8. User-Defined Structured Types 207

208

To define an overriding method, use the CREATE TYPE (or ALTER TYPE)
statement, and specify the OVERRIDING clause before the METHOD clause.
If OVERRIDING is not specified, the original method (belonging to the
supertype) will be used. For an overriding method to be defined, the
following conditions must be met:

* The type you are creating (or altering) must be a subtype of the structured
type whose method you intend to override.

* The signature (the method’s name and parameter list) of the method you
are declaring is identical to that of a method belonging to the supertype.

* An overriding method must implicitly override exactly one original
method.

* The routine you intend to override is a user-defined structured type
instance method.

* The original method is not declared with PARAMETER STYLE JAVA.

The following example demonstrates a sample scenario for the overriding of
methods:

Data types:

CREATE TYPE a AS (z varchar(20))
METHOD foo(i integer) RETURNS varchar(80)
LANGUAGE SQL;

CREATE TYPE b UNDER a AS (y varchar(20))
OVERRIDING METHOD foo(i integer) RETURNS varchar(80);

CREATE TYPE ¢ UNDER a AS (x varchar(20))
OVERRIDING METHOD foo(i integer) RETURNS varchar(80);

CREATE TYPE d UNDER b AS (w varchar(20))
OVERRIDING METHOD foo(i integer) RETURNS varchar(80);

In this situation, a is the supertype. Types b and c are subtypes of a. Finally, d
is the subtype of b

Methods:
CREATE METHOD foo(i integer) FOR a
RETURN "In method foo a. Input: " | char(i) | self..z | ".";
CREATE METHOD foo(i integer) FOR b
RETURN "In method foo_b. Input: " | char(i) | self..z |
1] y = u | Se1f..y | ||.||;
CREATE METHOD foo(i integer) FOR c
RETURN "In method foo c. Input: " | char(i) | self..z |
my =" selfoy | "x =" | self.x | "L

Programming Server Applications

CREATE METHOD foo(i integer) FOR d
RETURN "In method foo d. Input: " | char(i) | self..z |
my =" selfoy | "w="| self..w | ".";

The original method here is fooA. fooB, fooC, and fooD explicitly override
fooA. fooD implicitly overrides fooB and fooA. Similarly, fooB implicitly
overrides fooA, and fooC implicitly overrides fooA. (Note that explicit
overriding implies implicit overriding.)

Related concepts:

* ["User-Defined Structured Types” on page 200)

* [‘Structured Type Hierarchies” on page 203

Related tasks:
* ['Defining Structured Types” on page 201

* ['Defining Behavior for Structured Types” on page 206|

Related reference:

* “ALTER TYPE (Structured) statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
¢ “CREATE METHOD statement” in the SQL Reference, Volume 2

System-Generated Routines for Structured Types

Comparison and Casting Functions for Structured Types

DB2® automatically creates functions that cast values between the reference
type and its representation type, in both directions. The CREATE TYPE
statement has an optional CAST WITH clause that allows you to choose the
names of these two cast functions. By default, the names of the cast functions
are the same as the names of the structured type and its reference
representation type. For example, the CREATE TYPE Person_t statement
automatically creates functions with the following format:

CREATE FUNCTION VARCHAR(REF(Person_t))
RETURNS VARCHAR

DB2 also creates the function that does the inverse operation:

CREATE FUNCTION Person_t(VARCHAR(13))
RETURNS REF(Person_t)

You will use these cast functions whenever you need to insert a new value

into the typed table or when you want to compare a reference value to
another value.

Chapter 8. User-Defined Structured Types 209

DB2 also creates functions that let you compare reference types using the
following comparison operators: =, <>, <, <=, >, and >=.

Related concepts:

* ["User-Defined Structured Types” on page 200|

* ['Reference Types” on page 223

Related tasks:
* ["Defining Structured Types” on page 201

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Constructor Functions for Structured Types

When you create a structured type, DB2® creates a function of the same name
as the type is created. This function has no parameters and returns an instance
of the type with all of its attributes set to null. The function that is created for
structured type Person_t, for example, has the following format:

CREATE FUNCTION Person_t () RETURNS Person_t

For the subtype Manager_t, a constructor with the following format is created:
CREATE FUNCTION Manager_t () RETURNS Manager_t

To construct an instance of a type to insert into a column, use the constructor
function with the mutator methods. If the type is stored in a table, rather than
a column, you do not have to use the constructor function with the mutator
methods to insert an instance of a type.

Related concepts:

* ['User-Defined Structured Types” on page 200

Related tasks:
* ['Defining Structured Types” on page 201

Mutator Methods for Structured Types

A mutator method exists for each attribute of an object. The instance of a
structured type on which a method is invoked is called the subject instance of
the method. When the mutator method invoked on a subject instance receives
a new value for an attribute, the method returns a new instance with the
attribute updated to the new value. So, for type Person_t, DB2® creates
mutator methods for each of the following attributes: name, age, and address.

The mutator method DB2 creates for attribute age, for example, has the
following format:

210 Programming Server Applications

ALTER TYPE Person_t
ADD METHOD AGE(int)
RETURNS Person_t;

Related concepts:

¢ ["User-Defined Structured Types” on page 200|

Related tasks:
* ["Defining Structured Types” on page 201

Observer Methods for Structured Types

An observer method exists for each attribute of an object. If the method for an
attribute receives an object of the expected type or subtype, the method
returns the value of the attribute for that object.

The observer method DB2® creates for the attribute age of the type Person_t,
for example, has the following format:
ALTER TYPE Person_t

ADD METHOD AGE()
RETURNS INTEGER;

To invoke a method on a structured type, use the method invocation operator:

‘7

The following example demonstrates the use of observer methods for the
Person_t type:
CREATE FUNCTION MailingAddress (p Person_t)

RETURNS VARCHAR(40)
RETURN p..name() || * ' || p..address()

In this function, the name column and address column from a Person_t
instance are retrieved via their observer methods and concatenated into a

single string to form a mailing address.

Related concepts:

* ["User-Defined Structured Types” on page 200|

Related tasks:
* ['Defining Structured Types” on page 201|

Typed Tables

Typed Tables

Typed tables are tables that are defined with a user-defined structured type.
With typed tables, you can establish a hierarchical structure with a defined

Chapter 8. User-Defined Structured Types 211

212

relationship between those tables called a table hierarchy. The table hierarchy
is made up of a single root table, supertables, and subtables.

Typed tables store instances of structured types as rows, in which each
attribute of the type is stored in a separate column.

Related concepts:

* ['User-Defined Structured Types” on page 200)

* [“Reference Types” on page 223

* [“Substitutability in Typed Tables” on page 217

* ["Typed Views” on page 228|

Related tasks:
* ['Storing Objects in Typed Table Rows” on page 218|

* ['Dropping Typed Tables” on page 216

. | ‘Defining System-Generated Object Identifiers” on page 220|

* ["Defining Constraints on Object Identifier Columns” on page 222|

* [“Creating Typed Tables” on page 212|

Related reference:
* “CREATE TABLE statement” in the SQL Reference, Volume 2
* “DROP statement” in the SQL Reference, Volume 2

Creating Typed Tables

Typed tables are used to actually store instances of objects whose
characteristics are defined with the CREATE TYPE statement. You can create a
typed table using a variant of the CREATE TABLE statement. You can also
create a hierarchy of typed tables that is based on a hierarchy of structured
types. To store instances of subtypes in typed tables, you must create a
corresponding table hierarchy.

The figure below illustrates a typed table hierarchy. The example that follows
the figure illustrates the creation of this hierarchy.

Programming Server Applications

BusinessUnit
(Oid, Name, Headcount)

Person
(Oid, Name, Age, Address)

Employee Student
(..., SerialNum, Salary, Dept) (..., SerialNum, GPA)
\
\ \
Manager Architect
(.., Bonus) (.., StockOption)

Figure 4. Typed table hierarchy

Here is the SQL to create the BusinessUnit typed table:

CREATE TABLE BusinessUnit OF BusinessUnit_t
(REF IS 0id USER GENERATED);

Here is the SQL to create the tables in the Person table hierarchy:

CREATE TABLE Person OF Person_t
(REF IS 0id USER GENERATED);

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(SerialNum WITH OPTIONS NOT NULL,
Dept WITH OPTIONS SCOPE BusinessUnit);

CREATE TABLE Student OF Student_t UNDER Person
INHERIT SELECT PRIVILEGES;

CREATE TABLE Manager OF Manager_t UNDER Employee
INHERIT SELECT PRIVILEGES;

CREATE TABLE Architect OF Architect_t UNDER Employee
INHERIT SELECT PRIVILEGES;

Defining the Type of the Table

The first typed table created in the previous example is BusinessUnit. This
table is defined to be OF type BusinessUnit_t, so it will hold instances of that
type. This means that it will have a column corresponding to each attribute of
the structured type BusinessUnit_t, and one additional column called the

object identifier column.

Naming the Object Identifier

Chapter 8. User-Defined Structured Types 213

214

Because typed tables contain objects that can be referenced by other objects,
every typed table has an object identifier column as its first column. In this
example, the type of the object identifier column is REF(BusinessUnit_t). You
can name the object identifier column using the REF IS ... USER GENERATED
clause. In this case, the column is named 0id. The USER GENERATED part of
the REF IS clause indicates that you must provide the initial value for the
object identifier column of each newly inserted row. It is common practice in
object-oriented design to completely separate the data from the object
identifier. For that reason, you cannot update the value of the object identifier
after you insert the object identifier. If you want DB2 to generate the OID
values,you can use a a SEQUENCE or the GENERATE_UNIQUE() function.

Specifying the Position in the Table Hierarchy

The Person typed table is of type Person_t. To store instances of the subtypes
of employees and students, it is necessary to create the subtables of the Person
table, EmpToyee and Student. The two additional subtypes of Employee_t also
require tables. Those subtables are named Manager and Architect. Just as a
subtype inherits the attributes of its supertype, a subtable inherits the columns
of its supertable, including the object identifier column.

Note: A subtable must reside in the same schema as its supertable.

Rows in the Employee subtable, therefore, will have a total of seven columns:
0id, Name, Age, Address, SerialNum, Salary, and Dept.

A SELECT, UPDATE, or DELETE statement that operates on a supertable by
default automatically operates on all its subtables as well. For example, an
UPDATE statement on the Employee table might affect rows in the Employee,
Manager, and Architect tables, but an UPDATE statement on the Manager table
can only affect Manager rows.

If you want to restrict the actions of the SELECT, INSERT, or DELETE
statement to just the specified table, use the ONLY option.

Indicating That SELECT Privileges Are Inherited

The mandatory INHERIT SELECT PRIVILEGES clause of the CREATE TABLE
statement specifies that the resulting subtable, such as Employee, is initially
accessible by the same users and groups as the supertable, such as Person,
from which it is created using the UNDER clause. Any user or group
currently holding SELECT privileges on the supertable is granted SELECT
privileges on the newly created subtable. The creator of the subtable is the
grantor of the SELECT privileges. To specify privileges such as DELETE and
UPDATE on subtables, you must issue the same explicit GRANT or REVOKE
statements that you use to specify privileges on regular tables.

Programming Server Applications

Privileges may be granted and revoked independently at every level of a table
hierarchy. If you create a subtable, you can also revoke the inherited SELECT
privileges on that subtable. Revoking the inherited SELECT privileges from
the subtable prevents users with SELECT privileges on the supertable from
seeing any columns that appear only in the subtable. Revoking the inherited
SELECT privileges from the subtable limits users who only have SELECT
privileges on the supertable to seeing the supertable columns of the rows of
the subtable. Users can only operate directly on a subtable if they hold the
necessary privilege on that subtable. So, to prevent users from selecting the
bonuses of the managers in the subtable, revoke the SELECT privilege on that
table and grant it only to those users for whom this information is necessary.

Defining Column Options

The WITH OPTIONS clause lets you define options that apply to an
individual column in the typed table. The format of WITH OPTIONS is:

column-name WITH OPTIONS column-options

where column-name represents the name of the column in the CREATE TABLE
or ALTER TABLE statement, and column-options represents the options defined
for the column.

For example, to prevent users from inserting nulls into a SerialNum column,
specify the NOT NULL column option as follows:

(SerialNum WITH OPTIONS NOT NULL)
Defining the Scope of a Reference Column

Another use of WITH OPTIONS is to specify the SCOPE of a column. For
example, in the Employee table and its subtables, the clause:

Dept WITH OPTIONS SCOPE BusinessUnit

declares that the Dept column of this table and its subtables have a scope of
BusinessUnit. This means that the reference values in this column of the
EmpToyee table are intended to refer to objects in the BusinessUnit table.

For example, the following query on the Employee table uses the dereference
operator to tell DB2 to follow the path from the Dept column to the
BusinessUnit table. The dereference operator returns the value of the Name
column:

SELECT Name, Salary, Dept->Name
FROM Employee;

Related concepts:

« ["User-Defined Structured Types” on page 200)

Chapter 8. User-Defined Structured Types 215

* [‘Structured Type Hierarchies” on page 203|

¢ [“Typed Tables” on page 211
yp pag

Related tasks:
* ["Defining Structured Types” on page 201

* [‘Storing Objects in Typed Table Rows” on page 218|

* ["Dropping Typed Tables” on page 216

* ["Defining System-Generated Object Identifiers” on page 220|

* ['Defining Constraints on Object Identifier Columns” on page 222|

Related reference:
* “CREATE TABLE statement” in the SQL Reference, Volume 2
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Dropping Typed Tables

Dropping a typed table is similar to dropping a non-typed table. An
important difference is that you must ensure that the table you are dropping
has no subtables. If the table you are trying to drop does have subtables, an
error will occur. The following example shows how to drop the Architect
table:

DROP TABLE Architect;

When a subtable is dropped from a table hierarchy, the columns associated
with the subtable are no longer accessible. Through substitutability, dropping
a subtable has the semantic effect of deleting all the rows of the subtable from
the supertables. This may result in the activation of triggers or referential
integrity constraints defined on the supertables.

Other database objects such as tables and indexes will not be affected
although packages and cached dynamic statements are marked invalid.

You can also drop an entire table hierarchy. Simply add the HIERARCHY
clause to the DROP TABLE statement and name the root table of the
hierarchy. For example:

DROP TABLE HIERARCHY Person;

Dropping a table hierarchy will not result in the activation of triggers or
referential integrity contraints.

Related concepts:

¢ ['Structured Type Hierarchies” on page 203|

* ['Typed Tables” on page 211|

216 Programming Server Applications

Related reference:
* “DROP statement” in the SQL Reference, Volume 2

Substitutability in Typed Tables

When a SELECT, UPDATE, or DELETE statement is applied to a typed table,
the operation applies to the named table and all of its subtables. For example,
if you create a typed table from structured type Person_t and select all rows
from that table, your application can receive not just instances of the Person
type, but Person information about instances of the Employee subtype and
other subtypes.

The property of substitutability also applies to subtables created from
subtypes. For example, SELECT, UPDATE, and DELETE statements for the
EmpToyee subtable apply to both the Employee_t type and its own subtypes.
Similarly, a column defined with Address_t type can contain instances of a US
address or a Brazilian address. However, this does not mean that the UPDATE
statement can change the type of a row if, for instance, a Person_t row is to be
updated with Employee_t data. For this to work, the Person_t row would
have to be deleted, and the Employee_t row inserted as a new type.

To restrict substitutability in SELECT, UPDATE, or DELETE statements, you
can use the ONLY clause. For example, UPDATE ONLY(Person) SET will
update rows only in the Person table and not in its subtables.

INSERT operations, in contrast, only apply to the table that is specified in the
INSERT statement. Inserting into the Employee table creates an Employee_t
object in the Person table hierarchy.

You can also substitute subtype instances when you pass structured types as
parameters to functions, or as the result from a function. If a function has a
parameter of type Address_t, you can pass an instance of one of its subtypes,
such as US_addr_t, instead of an instance of Address_t. External table
functions cannot return structured type columns.

Because a column or table is defined with one type but might contain
instances of subtypes, it is sometimes important to distinguish between the
type that was used for the definition and the type of the instance that is
actually returned at runtime. The definition of the structured type in a
column, row, or function parameter is called the static type. The actual type of
a structured type instance is called the dynamic type. To retrieve information
about the dynamic type, your application can use the TYPE_NAME,
TYPE_SCHEMA, and TYPE_ID built-in functions.

Related concepts:

« [“Structured Type Hierarchies” on page 203

Chapter 8. User-Defined Structured Types 217

218

* ['Typed Tables” on page 211|

Related tasks:
* ['Creating a Structured Type Hierarchy” on page 204|
* ['Issuing Queries to Dereference References” on page 232|

Storing Objects in Typed Table Rows

When storing objects as rows in a table, each column of the table contains one
attribute of the object. Just as with non-typed tables, you must provide data
for all columns that are defined as NOT NULL, including the object identifier
column. Because the object identifier column is a REF type, which is strongly
typed, you must cast the user-provided object identifier values using the
system-generated cast function (which was created for you when you created
the structured type). For example, you can store an instance of a person, in a
table that contains a column for name and a column for age. First, here is an
example of a CREATE TABLE statement for storing instances of Person.

CREATE TABLE Person OF Person_t
(REF IS Oid USER GENERATED)

To insert an instance of Person into the table, you can use the following
syntax:

INSERT INTO Person (0id, Name, Age)
VALUES (Person_t('a'), 'Andrew', 29);

Table 10. Person typed table
Oid Name Age Address
a Andrew 29

Your program accesses attributes of the object by accessing the columns of the
typed table:

UPDATE Person
SET Age=30
WHERE Name='Andrew';

After the previous UPDATE statement, the table looks like this:

Table 11. Person typed table after update
Oid Name Age Address
a Andrew 30

Programming Server Applications

Because there is a subtype of Person_t called Employee_t, instances of
Employee_t cannot be stored in the Person table and need to be stored in a
subtable. The following CREATE TABLE statement creates the Employee
subtable under the Person table:
CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES

(SerialNum WITH OPTIONS NOT NULL,
Dept WITH OPTIONS SCOPE BusinessUnit);

And, again, an insert into the Employee table looks like this:

INSERT INTO Employee (0id, Name, Age, SerialNum, Salary)
VALUES (Employee t('s'), 'Susan', 39, 24001, 37000.48)

Table 12. Employer typed subtable

Oid Name Age Address SerialNum | Salary Dept
s Susan 39 24001 37000.48

If you execute the following query, the information for Susan is returned:

SELECT =*
FROM EmpTloyee
WHERE Name='Susan';

You can access instances of both employees and people just by executing your
SQL statement on the Person table. This feature is called substitutability. By
executing a query on the table that contains instances that are higher in the
type hierarchy, you automatically get instances of types that are lower in the
hierarchy. In other words, the Person table logically looks like this to SELECT,
UPDATE, and DELETE statements :

Table 13. Person table contains Person and Employee instances

Oid Name Age Address
a Andrew 30 (null)
S Susan 39 (null)

If you execute the following query, you get an object identifier and Person_t
information about both Andrew (a person) and Susan (an employee):

SELECT =*
FROM Person;

Related concepts:

* [‘Relationships between Obijects in Typed Tables” on page 224

« [“Substitutability in Typed Tables” on page 217]

* ["Typed Tables” on page 211|

Chapter 8. User-Defined Structured Types 219

Related tasks:
* ['Storing Instances of Structured Types” on page 202

* [‘Creating Typed Tables” on page 212|

Defining System-Generated Object Identifiers

There are two common approaches of generating unique values, both of
which can be applied to object identifiers:

* with sequences
» with the GENERATE_UNIQUE function

If you need to use numeric values as object identifiers, you can use a
sequence. To begin, use the REF USING clause to specify that the base type of
the object reference is to be a numeric type, in the following case, an INT:
CREATE TYPE BusinessUnit_t AS

(Name VARCHAR(20),

Headcount INT)

REF USING INT

MODE DB2SQL

The typed table definition is as follows:

CREATE TABLE BusinessUnit OF BusinessUnit_t
(REF IS oid USER GENERATED)

The sequence to generate object identifiers can be defined as follows:
CREATE SEQUENCE BusinessUnitO0id AS REF(BusinessUnit_t)

Note that modifying data in a subtable implicitly modifies all supertables.
Therefore, the trigger that invokes the sequence to generate the object
identifier is best added to the root of the table hierarchy.
CREATE TRIGGER Gen_Bunit_oid

NO CASCADE

BEFORE INSERT ON BusinessUnit

REFERENCING NEW AS new

FOR EACH ROW

MODE DB2SQL

SET new.oid = NEXTVAL FOR BusinessUnitOid

Note that since the sequence is defined as REF(BusinessUnitOid), no casting is
required to assign to the oid column.

A new business unit can now be added:

INSERT INTO BusinessUnit (Name, Headcount)
VALUES('Software', 10)

220 Programming Server Applications

The usage of a sequence also enables you to retrieve the generated object
identifier and use it in subsequent statements. For example, you can add an
employee to the Software BusinessUnit assuming the Dept column is of type
REF(BusinessUnit):

INSERT INTO Employee(Name, Age, SerialNum, Salary, Dept)
VALUES('Tom', 28, 106, 60000, PREVVAL FOR BusinessUnitOid)

As an alternative to using sequences to generate object identifiers, you can use
the GENERATE_UNIQUE function. Because GENERATE_UNIQUE returns a
CHAR (13) FOR BIT DATA value, ensure that the REF USING clause on the
CREATE TYPE statement can accommodate a value of that type. The default
of VARCHAR (16) FOR BIT DATA is suitable for this purpose. For example,
assume that the BusinessUnit_t type is created with the default representation
type; that is, no REF USING clause is specified, as follows:
CREATE TYPE BusinessUnit_t AS
(Name VARCHAR(20),

Headcount INT)
MODE DB2SQL;

The typed table definition is as follows:

CREATE TABLE BusinessUnit OF BusinessUnit_t
(REF IS 0id USER GENERATED)

Note that you must always provide the clause USER GENERATED.

An INSERT statement to insert a row into the typed table, then, might look
like this:

INSERT INTO BusinessUnit (0id, Name, Headcount)
VALUES(BusineSSUm't_t(GENERATE_UNIQUE()), 'Toy' 15);

To insert an employee that belongs to the Toy department, you can use a
statement like the following, which issues a subselect to retrieve the value of
the object identifier column from the BusinessUnit table, casts the value to the
BusinessUnit_t type, and inserts that value into the Dept column:
INSERT INTO Employee (0id, Name, Age, SerialNum, Salary, Dept)
VALUES (Employee t('d'), 'Dennis', 26, 105, 30000,
BusinessUnit_t(SELECT Oid FROM BusinessUnit WHERE Name='Toy'));

Instead of inserting the generated object identifier explicitly on the INSERT
statement, you can encapsulate the generation and insertion of the object
identifier in a trigger. A trigger on the root of the hierarchy can automate the
invocation of the GENERATE_UNIQUE function. The following trigger will
generate identifiers for inserts into the Person, Employee, Architect, and
Manager tables.

CREATE TRIGGER Gen_Person_oid

NO CASCADE
BEFORE INSERT ON Person

Chapter 8. User-Defined Structured Types 221

222

REFERENCING NEW AS new

FOR EACH ROW

MODE DB2SQL

SET new.oid = Person_t (generate_unique());

Related concepts:

* ['Reference Types” on page 223|

+ [“Relationships between Objects in Typed Tables” on page 224]

Related tasks:
* ["Creating a Structured Type Hierarchy” on page 204

+ [“Issuing Queries to Dereference References” on page 232

* ['Creating Typed Tables” on page 212

Related reference:

* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2
* “CREATE SEQUENCE statement” in the SQL Reference, Volume 2

Defining Constraints on Object Identifier Columns

If you want to use the object identifier column as a key column of the parent
table in a foreign key, you must first alter the typed table to add an explicit
unique or primary key constraint on the object identifier column. For
example, assume that you want to create a self-referencing relationship on

employees in which the manager of each employee must always exist as an
employee in the employee table, as shown in .

Empl Table
v |

OID Name Magr (ref)

Figure 5. Self-referencing type example

To define constraints on an object identifier column to create a self-referencing
relationship on an object:
Step 1. Create the type, for example:

CREATE TYPE Empl1_t AS
(Name VARCHAR(10), Mgr REF(Empl_t))
MODE DB2SQL;

Step 2. Create the typed table, for example:

Programming Server Applications

CREATE TABLE Empl OF Empl_t
(REF IS 0id USER GENERATED);

Step 3. Add the primary or unique constraint on the 0id column, for
example:

ALTER TABLE Emp1 ADD CONSTRAINT pkl UNIQUE(0id);
Step 4. Add the foreign key constraint, for example:

ALTER TABLE Empl ADD CONSTRAINT fk1 FOREIGN KEY(Mgr)
REFERENCES Empl (0id);

Related concepts:

* ['Reference Types” on page 223|

Related tasks:
* [‘Defining Structured Types” on page 201

.| ‘Storing Objects in Typed Table Rows” on page 218|

* ['Defining System-Generated Object Identifiers” on page 22(}

Related reference:
* “CREATE TABLE statement” in the SQL Reference, Volume 2
¢ “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Reference Types

Reference Types

For every structured type you create, DB2® automatically creates a companion
type. The companion type is called a reference type and the structured type to
which it refers is called a referenced type. Typed tables can make special use of
the reference type. You can also use reference types in SQL statements in the
same way that you use other user-defined types. To use a reference type in an
SQL statement, use REF(type-name), where type-name represents the
referenced type.

DB2 uses the reference type as the type of the object identifier column in
typed tables. The object identifier uniquely identifies a row object in the typed
table hierarchy. DB2 also uses reference types to store references to rows in
typed tables. You can use reference types to refer to each row object in the
table.

References are strongly typed. Therefore, you must have a way to use the
type in expressions. When you create the root type of a type hierarchy, you
can specify the base type for a reference with the REF USING clause of the
CREATE TYPE statement. The base type for a reference is called the
representation type. If you do not specify the representation type with the REF
USING clause, DB2 uses the default data type of VARCHAR(16) FOR BIT

Chapter 8. User-Defined Structured Types 223

224

DATA. The representation type of the root type is inherited by all its subtypes.
The REF USING clause is only valid when you define the root type of a
hierarchy. In the examples used throughout this section, the representation
type for the BusinessUnit_t type is INTEGER, while the representation type
for Person_t is VARCHAR(13).

Related concepts:

* ['Referential Integrity versus Scoped References” on page 228

+ [“Relationships between Objects in Typed Tables” on page 224|

* ["Typed Tables” on page 211|

Related tasks:
+ [“Storing Objects in Typed Table Rows” on page 218|

* ["Issuing Queries to Dereference References” on page 232

* [‘Defining System-Generated Object Identifiers” on page 220|

. | ‘Defining Constraints on Object Identifier Columns” on page 222|

+ [“Creating Typed Tables” on page 212|

Relationships between Objects in Typed Tables

You can define relationships between objects in one typed table and objects in
another table. You can also define relationships between objects in the same
typed table. For example, assume that you have defined a typed table that
contains instances of departments. Instead of maintaining department
numbers in the Employee table, the Dept column of the Employee table can
contain a logical pointer to one of the departments in the BusinessUnit table.
These pointers are called references, and are illustrated in .

Employee_t Table BusinessUnit_t Table
Name Age Address | SerialNum Salary Dept M QID Name Headcount I
(ref) 1 Toy
(ref) }/ 2 Shoe
(ref) 3 Finance
(ref) 4 Quality

(ref)

(ref)

(ref)

Figure 6. Structured type references from Employee_t to BusinessUnit_t

Programming Server Applications

A normal table (a table that is not a typed table) can have a REF column that
refers to a typed table. However, a typed table cannot have a REF column that
points to a normal table.

Important: References do not perform the same function as referential
constraints. It is possible to have a reference to a department that does not
exist. If it is important to maintain integrity between department and
employees, you can define a referential constraint between those two tables.
The real power of references is that it gives you the ability to write queries
that navigate the relationship between the tables. What the query does is
dereference the relationship and instantiate the object that is being pointed to.
The operator that you use to perform this action is called the dereference
operator, which looks like this: ->.

For example, the following query on the Employee table uses the dereference
operator to tell DB2® to follow the path from the Dept column to the
BusinessUnit table. The dereference operator returns the value of the Name
column:

SELECT Name, Salary, Dept->Name
FROM Employee;

Related concepts:

* [‘Reference Types” on page 223

* [‘Referential Integrity versus Scoped References” on page 228|

* [‘Typed Tables” on page 211

Related tasks:
* [‘Restricting Returned Types Using a TYPE Predicate” on page 235|

* ['Defining System-Generated Object Identifiers” on page 220

Defining Semantic Relationships with References

Using the WITH OPTIONS clause of CREATE TABLE, you can define that a
relationship exists between a column in one table and the objects in the same
or another table. The WITH OPTIONS clause of CREATE TABLE defines the
column properties for a column in a typed table. These definable table
properties include the relationship between a column in one table and the
objects in the same (or another) table. In the example illustrated below, the
department for each employee is actually a reference to an object in the
BusinessUnit table. To define the destination objects of a given reference
column, use the SCOPE keyword on the WITH OPTIONS clause.

Chapter 8. User-Defined Structured Types 225

226

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE BusinessUnit);

I I

Dept column of

Employee table BusinessUnit table

Employee (and subtables)

Oid | Name | Age | Address| SerialNum Salary| Dept

.

BusinessUnit

Oid | Name | Age | Headcount

Figure 7. Dept attribute refers to a BusinessUnit object

Self-Referencing Relationships

You can define scoped references to objects in the same typed table as well.
The statements in the following example create one typed table for parts and
one typed table for suppliers. To show the reference type definitions, the
sample also includes the statements used to create the types:

CREATE TYPE Company_t AS
(name VARCHAR(30),
lTocation VARCHAR(30))
MODE DB2SQL

CREATE TYPE Part_t AS
(Descript VARCHAR(20),
Supplied_by REF(Company t),
Used_in REF(part_t))

MODE DB2SQL

CREATE TABLE Suppliers OF Company_t
(REF IS suppno USER GENERATED)

Programming Server Applications

CREATE TABLE Parts OF Part_t
(REF IS Partno USER GENERATED,
Supplied_by WITH OPTIONS SCOPE Suppliers,
Used in WITH OPTIONS SCOPE Parts)

Parts table

Partno | Descript | Supplied_by | Used_in

Part_t type

v

Supplier table

Suppno Name Location

Company_t type

Figure 8. Example of a self-referencing scope

You can use scoped references to write queries that, without scoped
references, would have to be written as outer joins or correlated subqueries.
For example, the two following queries retrieve the supplier of the part in
which the part 1234’ is being used:

SELECT Used_in->Supplied_by->Name

FROM Parts
WHERE Partno = Part_t('1234')

Without a a scoped reference the query looks like this:

SELECT S.Name
FROM (Parts AS P RIGHT OUTER JOIN Parts C ON P.Used_in = C.Partno)
RIGHT OUTER JOIN Suppliers S ON C.Supplied_by = S.Suppno
WHERE P.Partno = Part t('1234')

Related concepts:

* [‘Reference Types” on page 223

* ['Referential Integrity versus Scoped References” on page 228

* ['Relationships between Objects in Typed Tables” on page 224|

* [‘Typed Tables” on page 211|

Chapter 8. User-Defined Structured Types 227

Related tasks:
* ['Defining System-Generated Obiject Identifiers” on page 220|

Referential Integrity versus Scoped References

Although scoped references do define relationships among objects in tables,
they are different than referential integrity relationships. Scopes simply
provide information about a target table. That information is used when
dereferencing objects from that target table. Scoped references do not require
or enforce that a value exists at the other table. To ensure that the objects in
these relationships exist, you must add a referential constraint between the
tables.

Related concepts:

* ['Reference Types” on page 223

e ["Typed Tables” on page 211
yp pag

Related tasks:

* [’Defining Semantic Relationships with References” on page 225|

Typed Views

228

Typed Views

For typed views, the names and data types of the attributes of the structured
type become the names and data types of the columns of this typed view.
Rows of the typed view can be thought of as a representation of instances of
the structured type.

Like a typed table, a typed view can be part of a view hierarchy. A subview
inherits columns from its superview. The term subview applies to all typed
views that are below a typed view in the view hierarchy. A proper subview of
a view V is a view below V in the typed view hierarchy.

Related concepts:

* ["User-Defined Structured Types” on page 200|

* ["Typed Tables” on page 211|

Related tasks:

* [‘Creating Typed Views” on page 229

* ["Altering Typed Views” on page 231

* ["'Dropping Typed Views” on page 232|

Related reference:

Programming Server Applications

* “ALTER VIEW statement” in the SQL Reference, Volume 2
¢ “CREATE VIEW statement” in the SQL Reference, Volume 2
* “DROP statement” in the SQL Reference, Volume 2

Creating Typed Views

You can create a typed view using the CREATE VIEW statement. For example,
to create a view of the typed BusinessUnit table, you can define a structured
type that has the desired attributes and then create a typed view using that
type:
CREATE TYPE VBusinessUnit_t AS (Name VARCHAR(20))
MODE DB2SQL;

CREATE VIEW VBusinessUnit OF VBusinessUnit_t MODE DB2SQL
(REF IS VObjectID USER GENERATED)
AS SELECT VBusinessUnit_t(VARCHAR(0id)), Name FROM BusinessUnit;

The OF clause in the CREATE VIEW statement tells DB2 to base the columns
of the view on the attributes of the indicated structured type. In this case, DB2
bases the columns of the view on the VBusinessUnit_t structured type.

The VObjectID column of the view has a type of REF(VBusinessUnit_t). Since
you cannot cast from a type of REF(BusinessUnit_t) to REF(VBusinessUnit_t),
you must first cast the value of the 0id column from table BusinessUnit to
data type VARCHAR, and then cast from data type VARCHAR to data type
REF(VBusinessUnit_t).

The MODE DB2SQL clause specifies the mode of the typed view. This is the
only mode currently supported.

The REF IS... clause is identical to that of the typed CREATE TABLE
statement. It provides a name for the object identifier column of the view
(VObjectID in this case), which is the first column of the view. If you create a
root view, you must specify an object identifier column for the view. If you
create a subview, it inherits the object identifier column.

The USER GENERATED clause specifies that the value for the object identifier
column must be provided by the user when inserting a row. Once inserted,
the object identifier column cannot be updated.

The body of the view, which follows the keyword AS, is a SELECT statement
that determines the content of the view. The column types returned by this
SELECT statement must be compatible with the column types of the typed
view, including the object identifier column.

Chapter 8. User-Defined Structured Types 229

230

To illustrate the creation of a typed view hierarchy, the following example
defines a view hierarchy that omits some sensitive data and eliminates some
type distinctions from the Person table hierarchy:

CREATE TYPE VPerson_t AS (Name VARCHAR(20))
MODE DB2SQL;

CREATE TYPE VEmployee_ t UNDER VPerson_t
AS (Salary INT, Dept REF(VBusinessUnit_t))
MODE DB2SQL;

CREATE VIEW VPerson OF VPerson_t MODE DB2SQL
(REF IS VObjectID USER GENERATED)
AS SELECT VPerson_t (VARCHAR(Oid)), Name FROM ONLY(Person);

CREATE VIEW VEmployee OF VEmployee_ t MODE DB2SQL
UNDER VPerson INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE VBusinessUnit)
AS SELECT VEmployee_ t(VARCHAR(0id)), Name, Salary,
VBusinessUnit_t(VARCHAR(Dept))
FROM EmpTloyee;

The two CREATE TYPE statements create the structured types that are needed
to create the object view hierarchy for this example.

The first typed CREATE VIEW statement above creates the root view of the
hierarchy, VPerson, and is very similar to the VBusinessUnit view definition.
The difference is the use of ONLY (Person) to ensure that only the rows in the
Person table hierarchy that are in the Person table, and not in any subtable,
are included in the VPerson view. This ensures that the 0id values in VPerson
are unique compared with the 0id values in VEmployee. The second CREATE
VIEW statement creates a subview VEmployee under the view VPerson. As was
the case for the UNDER clause in the CREATE TABLE...UNDER statement,
the UNDER clause establishes the view hierarchy. You must create a subview
in the same schema as its superview. Like typed tables, subviews inherit
columns from their superview. Rows in the VEmployee view inherit the
columns VObjectID and Name from VPerson and have the additional columns
Salary and Dept associated with the type VEmployee_t.

The INHERIT SELECT PRIVILEGES clause has the same effect when you
issue a CREATE VIEW statement as when you issue a typed CREATE TABLE
statement. The WITH OPTIONS clause in a typed view definition also has the
same effect as it does in a typed table definition. The WITH OPTIONS clause
enables you to specify column options such as SCOPE. The READ ONLY
clause forces a superview column to be marked as read-only, so that
subsequent subview definitions can specify an expression for the same
column that is also read-only.

Programming Server Applications

If a view has a reference column, like the Dept column of the VEmployee view,
you must associate a scope with the column to use the column in SQL
dereference operations. If you do not specify a scope for the reference column
of the view and the underlying table or view column is scoped, then the
scope of the underlying column is passed on to the reference column of the
view. You can explicitly assign a scope to the reference column of the view by
using the WITH OPTIONS clause. In the previous example, the Dept column
of the VEmpToyee view receives the VBusinessUnit view as its scope. If the
underlying table or view column does not have a scope, and no scope is
explicitly assigned in the view definition, or no scope is assigned with an
ALTER VIEW statement, the reference column remains unscoped.

Related concepts:

* ["User-Defined Structured Types” on page 200

* ["Typed Tables” on page 211

* ["Typed Views” on page 22§

Related reference:
* “CREATE VIEW statement” in the SQL Reference, Volume 2

Altering Typed Views
The ALTER VIEW statement modifies an existing view by altering a reference

type column to add a scope. Any other changes you intend to make to a view
require that you drop and then re-create the view.

When altering the view, the scope must be added to an existing reference type
column that does not already have a scope defined. Further, the column must

not be inherited from a superview.

The data type of the column name in the ALTER VIEW statement must be
REF (type of the typed table name or typed view name).

Related concepts:

* [‘User-Defined Structured Types” on page 200

* ["Typed Tables” on page 211|

* ["Typed Views” on page 228|

Related tasks:
¢ [‘Creating Typed Views” on page 229

Related reference:
* “ALTER VIEW statement” in the SQL Reference, Volume 2

Chapter 8. User-Defined Structured Types 231

Dropping Typed Views

The following example shows how to drop the EMP_VIEW:
DROP VIEW EMP_VIEW;

Any views that are dependent on the dropped view become inoperative.

Other database objects such as tables and indexes will not be affected
although packages and cached dynamic statements are marked invalid.

As in the case of a table hierarchy, it is possible to drop an entire view
hierarchy in one statement by naming the root view of the hierarchy, as in the
following example:

DROP VIEW HIERARCHY VPerson;

Related concepts:

* ["User-Defined Structured Types” on page 200|

+ [‘Typed Tables” on page 211|

+ ["Typed Views” on page 228

Related tasks:
* [“Creating Typed Views” on page 229

Related reference:
* “DROP statement” in the SQL Reference, Volume 2

Querying Typed Tables and Typed Views

232

Issuing Queries to Dereference References

Whenever you have a scoped reference, you can use a dereference operation to
issue queries that would otherwise require outer joins or correlated
subqueries. Consider the Dept attribute of the Employee table, and subtables of
EmpToyee, which is scoped to the BusinessUnit table. The following example
returns the names, salaries, and department names, or NULL values, where
applicable, of all the employees in the database; that means the query returns
these values for every row in the Employee table and the Employee subtables.
You could write a similar query using a correlated subquery or an outer join.
However, it is easier to use the dereference operator (->) to traverse the path
from the reference column in the Employee table and subtables to the
BusinessUnit table, and to return the result from the Name column of the
BusinessUnit table.

The simple format of the dereference operation is as follows:

Programming Server Applications

scoped-reference-expression->column-in-target-typed-table

The following query uses the dereference operator to obtain the Name column
from the BusinessUnit table:

SELECT Name, Salary, Dept->Name
FROM EmpTloyee

The result of the query is as follows:

NAME SALARY NAME
Dennis 30000 Toy
Eva 45000 Shoe
Franky 39000 Shoe
Iris 55000 Toy
Christina 85000 Toy
Ken 105000 Shoe
Leo 92000 Shoe
Brian 112000 Toy
Susan 37000.48 ---

You can dereference self-referencing references as well. Consider the Parts
table. The following query lists the parts directly used in a wing with the
locations of the suppliers of the parts:

SELECT P.Descript, P.Supplied_by->Location

FROM Parts P
WHERE P.Used_in->Descript='Wing';

DEREF Built-in Function

You can also dereference references to obtain entire structured objects as a
single value by using the DEREF built-in function. The simple form of DEREF
is as follows:

DEREF (scoped-reference-expression)

DEREF is usually used in the context of other built-in functions, such as
TYPE_NAME, or to obtain a whole structured object for the purposes of
binding out to an application.

Other Type-Related Built-in Functions

The DEREEF function is often invoked as part of the TYPE_NAME, TYPE_ID,
or TYPE_SCHEMA built-in functions. The purpose of these functions,
respectively, is to return the name, internal ID, and schema name of the
dynamic type of an expression. For example, the following example creates a
Project typed table with an attribute called Responsible:
CREATE TYPE Project_t
AS (Projid INT, Responsible REF(Employee_t))
MODE DB2SQL;

Chapter 8. User-Defined Structured Types 233

CREATE TABLE Project
OF Project_t (REF IS 0id USER GENERATED,
Responsible WITH OPTIONS SCOPE Employee);

The Responsible attribute is defined as a reference to the Employee table, so
that it can refer to instances of managers and architects as well as employees.
If your application needs to know the name of the dynamic type of every row,
you can use a query like the following;:

SELECT Projid, Responsible->Name,

TYPE_NAME (DEREF (Responsible))
FROM PROJECT;

The preceding example uses the dereference operator to return the value of
Name from the Employee table, and invokes the DEREF function to return the
dynamic type for the instance of Employee_t.

Authorization requirement: To use the DEREF function, you must have SELECT
authority on every table and subtable in the referenced portion of the table
hierarchy. In the above query, for example, you need SELECT privileges on
the Employee, Manager, and Architect typed tables.

Related concepts:

+ [“User-Defined Structured Types” on page 200|

* ['Reference Types” on page 223|

+ [“Relationships between Objects in Typed Tables” on page 224|

[‘Typed Tables” on page 211

* ['Typed Views” on page 228|

Related tasks:
* ['Storing Objects in Typed Table Rows” on page 218

* ['Returning Objects of a Particular Type Using ONLY” on page 234

* [‘Restricting Returned Types Using a TYPE Predicate” on page 235|
* [‘Returning All Possible Types Using OUTER” on page 236|
* ['Defining System-Generated Obiject Identifiers” on page 220|

Related reference:
* “DEREF scalar function” in the SQL Reference, Volume 1

Returning Objects of a Particular Type Using ONLY

To have a query return only objects of a particular type, and not of its
subtypes, use the ONLY keyword. For example, the following query returns
only the names of employees that are not architects or managers:

234 Programming Server Applications

SELECT Name
FROM ONLY (Employee);

The previous query returns the following result:
NAME

To protect the security of the data, the use of ONLY requires the SELECT
privilege on every subtable of Employee.

You can also use the ONLY clause to restrict the operation of an UPDATE or
DELETE statement to the named table. That is, the ONLY clause ensures that

the operation does not occur on any subtables of that named table.

Related concepts:

* [“User-Defined Distinct Types” on page 179

+ [‘Typed Tables” on page 211

Related tasks:
+ [“Storing Objects in Typed Table Rows” on page 218

* [“Issuing Queries to Dereference References” on page 232

Restricting Returned Types Using a TYPE Predicate

If you want a more general way to restrict what rows are returned or affected
by an SQL statement, you can use the type predicate. The type predicate
enables you to compare the dynamic type of an expression to one or more
named types. A simple version of the type predicate is:

<expression> IS OF (<type_name>[, ...])

where expression represents an SQL expression that returns an instance of a
structured type, and type_name represents one or more structured types with
which the instance is compared.

For example, the following query returns people who are greater than 35
years old, and who are either managers or architects:
SELECT Name
FROM Employee E
WHERE E.Age > 35 AND
DEREF(E.O0id) IS OF (Manager_t, Architect_t);

The previous query returns the following result:

Chapter 8. User-Defined Structured Types 235

236

Related concepts:

* ["User-Defined Structured Types” on page 200|

+ ['Reference Types” on page 223

* ["Typed Tables” on page 211|

* ['Typed Views” on page 228|

Related tasks:
» [“Storing Objects in Typed Table Rows” on page 218

* ['Issuing Queries to Dereference References” on page 232

Returning All Possible Types Using OUTER

When DB2 returns a structured type row value, the application does not
necessarily know which attributes that particular instance contains or can
contain. For example, when you return a person, that person might just have
the attributes of a person, or it might have attributes of an employee,
manager, or other subtype of person. If your application needs to obtain the
values of all possible attributes within one SQL query, you can use the
keyword OUTER in the table reference.

OUTER (table-name) and OUTER(view-name) return a virtual table that consists
of the columns of the table or view followed by the additional columns
introduced by each of its subtables, if any. The additional columns are added
on the right hand side of the table, traversing the subtable hierarchy in the
order of depth. Subtables that have a common parent are traversed in the
order in which their respective types were created. The rows include all the
rows of table-name and all of the additional rows of the subtables of table-name.
Null values are returned for columns that are not in the subtable for the row.

You might use OUTER, for example, when you want to see information about
people who tend to achieve above the norm. The following query returns
information from the Person table hierarchy that have either a high salary
Salary or a high grade point average GPA:
SELECT =
FROM OUTER(Person) P

WHERE P.Salary > 200000
OR P.GPA > 3.95 ;

Using OUTER(Person) enables you to refer to subtype attributes, which is not
otherwise possible in Person queries.

Programming Server Applications

The use of OUTER requires the SELECT privilege on every subtable or view
of the referenced table because all of their information is exposed through its
usage.

Suppose that your application needs to see not just the attributes of these high
achievers, but what the most specific type is for each one. You can do this in a
single query by passing the object identifier of an object to the TYPE_NAME
built-in function and combining it with an OUTER query, as follows:
SELECT TYPE_NAME(DEREF(P.0id)), P.*
FROM OUTER(Person) P

WHERE P.Salary > 200000 OR
P.GPA > 3.95 ;

Because the Address column of the Person typed table contains structured
types, you would have to define additional functions and issue additional
SQL to return the data from that column. Assuming you perform these
additional steps, the preceding query returns the following output, where
Additional Attributes includes GPA and Salary:

1 0ID NAME Additional Attributes
PERSON_T a Andrew

PERSON_T b Bob

PERSON_T o Cathy

EMPLOYEE_T d Dennis

EMPLOYEE_T e Eva

EMPLOYEE_T f Franky

MANAGER_T i Iris

ARCHITECT_T 1 Leo

EMPLOYEE_T S Susan

Related concepts:

* ["User-Defined Structured Types” on page 200|

« [‘Typed Tables” on page 211

* ["Typed Views” on page 228]

Related tasks:
* [‘Storing Structured Type Objects in Table Columns” on page 237

* [‘Issuing Queries to Dereference References” on page 232

Structured Types as Column Types

Storing Structured Type Objects in Table Columns

Storing objects in columns is useful when you need to model facts about your
business objects that cannot be adequately modeled with the DB2 built-in data
types. In other words, you may store your business objects (such as

Chapter 8. User-Defined Structured Types 237

238

employees, departments, and so on) in typed tables, but those objects might
also have attributes that are best modeled using a structured type.

For example, assume that your application has the need to access certain parts

of an address. Rather than store the address as an unstructured character
string, you can store it as a structured object as shown in

Person

Name (VARCHAR) Age (INT) | Address (Address_t)

Street Number City State

Figure 9. Address attribute as a structured type

Furthermore, you can define a type hierarchy of addresses to model different
formats of addresses that are used in different countries. For example, you
might want to include both a US address type, which contains a zip code, and
a Brazilian address type, for which the neighborhood attribute is required.

shows a hierarchy for the different types of addresses. The root type
is Address_t, which has three subtypes, each with an additional attribute that
reflects some aspect of how addresses are formed in that region.

Address_t
(Street, Number, City, State)

Brazil_addr_t Germany_addr_t US_addr_t
(Neighborhood) (Family_name) (Zipcode)

Figure 10. Structured type hierarchy for Address_t type

CREATE TYPE Address_t AS
(street VARCHAR(30),
number CHAR(15),
city VARCHAR(30),
state VARCHAR(10))
MODE DB2SQL;

CREATE TYPE Germany_addr_t UNDER Address_t AS
(family name VARCHAR(30))
MODE DB2SQL;

Programming Server Applications

CREATE TYPE Brazil_addr_t UNDER Address_t AS
(neighborhood VARCHAR(30))
MODE DB2SQL;

CREATE TYPE US_addr_t UNDER Address_t AS
(zip CHAR(10))
MODE DB2SQL;

When objects are stored as column values, the attributes are not externally
represented as they are with objects stored in rows of tables. Instead, you
must use methods to manipulate their attributes. DB2 generates both observer
methods to return attributes, and mutator methods to change attributes. The
following example uses one observer method and two mutator methods, one
for the Number attribute and one for the Street attribute, to change an address:

UPDATE EmpTloyee

SET Address=Address..Number('4869')..Street('Appletree')

WHERE Name='Franky'
AND Address..State='CA';

In the preceding example, the SET clause of the UPDATE statement invokes
the Number and Street mutator methods to update attributes of the instances
of type Address_t.

To allow for updating of more complex, especially nested, instances of
structured types, DB2 also allows you to drill down to the attribute to be
updated on the left-hand side of the SET clause:
UPDATE EmpTloyee
SET Address..Number = '4869',

Address..Street = 'Appletree’
WHERE Name='Franky' AND Address..State='CA'

The WHERE clause restricts the operation of the update statement with two
predicates: an equality comparison for the Name column, and an equality

comparison that invokes the State observer method of the Address column.

Related concepts:

* [‘User-Defined Structured Types” on page 200

Related tasks:
* [‘Defining Structured Types” on page 201|

* [‘Storing Instances of Structured Types” on page 202

* ["Inserting Structured Type Attributes Into Columns” on page 240|

* [‘Retrieving and Modifying Structured Type Values in Columns” on page]
243

Related reference:

Chapter 8. User-Defined Structured Types 239

240

» “UPDATE statement” in the SQL Reference, Volume 2

Inserting Structured Type Attributes Into Columns

To insert an attribute of a user-defined structured type into a column that is of
the same type as the attribute using embedded static SQL, enclose the host
variable that represents the instance of the type in parentheses, and append
the double-dot operator and attribute name to the closing parenthesis. For
example, consider the following situation:

- PERSON_T is a structured type that includes the attribute NAME

of type VARCHAR(30).

- T1 is a table that includes a column Cl of type VARCHAR(30).

- personhv is the host variable declared for type PERSON_T in the
programming language.

The proper syntax for inserting the NAME attribute into column C1 is:
EXEC SQL INSERT INTO T1 (C1) VALUES ((:personhv)..NAME)

Related concepts:

+ [“Observer Methods for Structured Types” on page 211

Related tasks:
+ ["Defining Structured Types” on page 201

+ [“Storing Structured Type Objects in Table Columns” on page 237

* [‘Retrieving Structured Type Attributes” on page 244|

Defining and Altering Tables with Structured Type Columns

Creating a table with columns of structured types is for the most part no
different than creating tables with only the DB2 SQL data types. For every
column that is defined, a corresponding data type is assigned. For structured
type columns, the structured type name is provided as the corresponding data
type. For example, the following ALTER TABLE statement adds a column of
Address_t type to a Customer_List untyped table:

ALTER TABLE Customer_List
ADD COLUMN Address Address_t;

Now instances of Address_t or any of the subtypes of Address_t can be stored
in this table.

If you are concerned with how structured types are laid out in the data
record, you can use the INLINE LENGTH clause in the CREATE TYPE
statement. This clause will indicate the maximum size of an instance of a
structured type in a column. If the size of a structured type instance is less
than the defined maximum, the data will be stored inline with the rest of the

Programming Server Applications

values in the row. If the size of the structured type exceeds the defined
maximum, the structured type data is stored outside of the table (much like
LOBs).

To accommodate changes you make to a structured type, you can alter the
affected structured type column’s size by issuing the ALTER TABLE ALTER
COLUMN SET INLINE LENGTH statement. After altering a column’s length
you should invoke the REORG utility.

Related concepts:

* ["User-Defined Structured Types” on page 200)

Related tasks:
* ["'Defining Structured Types” on page 201

* [‘Storing Structured Type Objects in Table Columns” on page 237|

Related reference:
» “ALTER TABLE statement” in the SQL Reference, Volume 2
¢ “CREATE TABLE statement” in the SQL Reference, Volume 2

Defining Types with Structured Type Attributes

A type can be created with a structured type attribute, or it can be altered
(before it is used) to add or drop such an attribute. For example, the following
CREATE TYPE statement contains an attribute of type Address_t:
CREATE TYPE Person_t AS

(Name VARCHAR(20),

Age INT,

Address Address_t)

REF USING VARCHAR(13)

MODE DB2SQL;

Person_t can be used as the type of a table, the type of a column in a regular
table, or as an attribute of another structured type.

Related tasks:
* [‘Defining Structured Types” on page 201|

* [‘Storing Structured Type Objects in Table Columns” on page 237

Related reference:
* “CREATE TYPE (Structured) statement” in the SQL Reference, Volume 2

Chapter 8. User-Defined Structured Types 241

242

Inserting Rows That Contain Structured Type Values

When you create a structured type, DB2 automatically generates a constructor
method for the type, and generates mutator and observer methods for the
attributes of the type. You can use these methods to create instances of
structured types and to insert these instances into a column of a table.

Assume that you want to add a new row to the Employee typed table and that
you want that row to contain an address. Just as with built-in data types, you
can add this row using INSERT with the VALUES clause. However, when you
specify the value to insert into the address, you must invoke the
system-provided constructor function to create the value:

INSERT INTO Employee (0id, Name, Age, SerialNum, Salary, Dept, Address)
VALUES (Employee t('m'), 'Marie', 35, 005, 55000, BusinessUnit t(2),
US_addr t ()

..street('Bakely Avenue') H
..number('555') H
..city('San Jose') Y
..state('cA") H
..zip('95141')); @

The previous statement creates an instance of the US_addr_t type by
performing the following tasks:

1. The call to US_addr_t() invokes the constructor function for the US_addr_t
type to create an instance of the type with all attributes set to null values.

2. The call to ..street('Bakely Avenue') invokes the mutator method for
the street attribute to set its value to ‘Bakely Avenue’.

3. The call to ..number('555"') invokes the mutator method for the number
attribute to set its value to ‘555’.

4. The call to ..city('San Jose') invokes the mutator method for the city
attribute to set its value to 'San Jose'.

5. The call to ..state('CA') invokes the mutator method for the state
attribute to set its value to 'CA'".

6. The call to ..zip('95141") invokes the mutator method for the zip
attribute to set its value to '95141'.

Notice that although the type of the column Address in the Employee table is
defined with type Address_t, the property of substitutability means that you
can populate it with an instance of US_addr_t because US_addr_t is a subtype
of Address_t.

To avoid having to explicitly call the mutator methods for each attribute of a
structured type every time you create an instance of the type, consider
defining your own SQL-bodied constructor function that initializes all of the

Programming Server Applications

attributes. The following example contains the declaration for an SQL-bodied
constructor function for the US_addr_t type:

CREATE FUNCTION US_addr t

(street Varchar(30),
number Char(15),
city Varchar(30),
state Varchar(20),
zip Char(10))

RETURNS US_addr t

LANGUAGE SQL

RETURN US_addr_t()..street(street)..number(number)

..city(city)..state(state)..zip(zipcode);

The following example demonstrates how to create an instance of the
US_addr_t type by calling the SQL-bodied constructor function from the
previous example:

INSERT INTO Employee(0Oid, Name, Age, SerialNum, Salary, Dept, Address)
VALUES (Employee t('m'), 'Marie', 35, 005, 55000, BusinessUnit t(2),
US_addr_t('Bakely Avenue', '555', 'San Jose', 'CA', '95141'));

Related concepts:
* [“Substitutability in Typed Tables” on page 217|
+ [‘Typed Tables” on page 211|

Related tasks:

* ["“Defining Structured Types” on page 201|

* [“Storing Structured Type Objects in Table Columns” on page 237

* [“Inserting Structured Type Attributes Into Columns” on page 240|

* [‘Defining and Altering Tables with Structured Type Columns” on page 240|

* ['Defining Types with Structured Type Attributes” on page 241|

Modifying Structured Type Values in Columns

Retrieving and Modifying Structured Type Values in Columns

There are two ways that applications and user-defined functions can access
data in structured type columns: by accessing individual attributes of an
object, or by assessing the object as a single value. If you want to treat an
object as a single value, you must first define transform functions. Once you
define the correct transform functions, you can select a structured object much
as you can any other value:

SELECT Name, Dept, Address

FROM Employee
WHERE Salary > 20000;

Chapter 8. User-Defined Structured Types 243

244

The following topics describe how you can explicitly access individual
attributes of an object by invoking the DB2 built-in observer and mutator
methods. These built-in methods do not require you to define a transform
function.

Procedure:

1. Retrieving Structured Type Attributes

2. Accessing the Attributes of Subtypes

3. Modifying Structured Type Attributes

4. Returning Information About a Structured Type

Related concepts:

* ["Transform Functions and Transform Groups” on page 246|

Related tasks:
* [‘Retrieving Structured Type Attributes” on page 24%'

.| ‘Accessing the Attributes of Subtypes” on page 245|

+ ["Modifying Structured Type Attributes” on page 245|

+ [“Returning Information About a Structured Type” on page 246

+ [“Storing Structured Type Objects in Table Columns” on page 237

* [“Inserting Structured Type Attributes Into Columns” on page 240}

* [“Inserting Rows That Contain Structured Type Values” on page 242|

Retrieving Structured Type Attributes
To explicitly access individual attributes of an object, invoke the DB2 built-in

observer methods on those attributes. Using the observer methods, you can
retrieve the attributes individually rather than treating the object as a single
value.

The following example accesses data in the Address column by invoking the
observer methods on Address_t, the defined static type for the Address
column:
SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state
FROM Employee
WHERE Salary > 20000;

Note: DB2 enables you to invoke methods that take no parameters using
either <type-name>. .<method-name>() or <type-name>..<method-name>,
where type-name represents the name of the structured type, and
attribute-name represents the name of the method that takes no
parameters.

Programming Server Applications

You can also use observer methods to select each attribute into a host variable,
as follows:
SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state
INTO :name, :dept, :street, :number, :city, :state
FROM Employee
WHERE Empno = '000250';

Related tasks:
+ ["Inserting Structured Type Attributes Into Columns” on page 240|

* [“Accessing the Attributes of Subtypes” on page 245

* ["Modifying Structured Type Attributes” on page 245|

* ['Returning Information About a Structured Type” on page 246

Accessing the Attributes of Subtypes

In the Employee table, addresses can be of 4 different types: Address_t,
US_addr_t, Brazil_addr_t, and Germany_addr_t. To access attributes of values
from one of the subtypes of Address_t, you must use the TREAT expression to
indicate to DB2 that a particular object can be of the US_addr_t,
Germany_addr_t, or Brazil_addr_t types. The TREAT expression casts a

structured type expression into one of its subtypes, as shown in the following
query:
SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state,
CASE
WHEN Address IS OF (US_addr_t)
THEN TREAT(Address AS US_addr_t)..zip
WHEN Address IS OF (Germany addr_t)
THEN TREAT (Address AS Germany_ addr_t)..family name
WHEN Address IS OF (Brazil addr_t)
THEN TREAT (Address AS Brazil_addr_t)..neighborhood
ELSE NULL END
FROM Employee
WHERE Salary > 20000;

Related tasks:
* [‘Inserting Structured Type Attributes Into Columns” on page 240|

* ['Retrieving Structured Type Attributes” on page 244|

* [‘Modifying Structured Type Attributes” on page 245|

¢ ['Returning Information About a Structured Type” on page 246

Modifying Structured Type Attributes

To change an attribute of a structured column value, invoke the mutator
method for the attribute you want to change. For example, to change the

Chapter 8. User-Defined Structured Types 245

street attribute of an address, you can invoke the mutator method for street
with the value to which it will be changed. The returned value is an address
with the new value for street. The following example invokes a mutator
method for the attribute named street to update an address type in the
Employee table:

UPDATE Employee

SET Address = Address..street('Bailey')
WHERE Address..street = 'Bakely';

The following example performs the same update as the previous example,
but instead of naming the structured column for the update, the SET clause
directly accesses the mutator method for the attribute named street:

UPDATE Employee

SET Address..street = 'Bailey'
WHERE Address..street = 'Bakely';

Related tasks:
* ['Inserting Structured Type Attributes Into Columns” on page 240)

.| ‘Retrieving Structured Type Attributes” on page 244|

* [“Accessing the Attributes of Subtypes” on page 245|

+ ['Returning Information About a Structured Type” on page 246

Returning Information About a Structured Type

You can use built-in functions to return the name, schema, or internal type ID
of a particular type. The following statement returns the exact type of the
address value associated with the employee named ‘Iris’:

SELECT TYPE_NAME(Address)

FROM EmpTloyee
WHERE Name='Iris';

Related tasks:
* ["Inserting Structured Type Attributes Into Columns” on page 240|

* [‘Retrieving Structured Type Attributes” on page 244|

* ["Accessing the Attributes of Subtypes” on page 245

* ['Modifying Structured Type Attributes” on page 245|

Transform Functions and Transform Groups

Transform Functions and Transform Groups
Transform functions are used to exchange structured type values with host

language programs and with external functions and methods. Transform
functions naturally occur in pairs: one FROM SQL transform function, and

246 Programming Server Applications

one TO SQL transform function. The FROM SQL function converts a
structured type object into a type that can be exchanged with an external
program, and the TO SQL function constructs the object.

When you create transform functions, you put each logical pair of transform
functions into a group. The transform group name uniquely identifies a pair of
these functions for a given structured type.

Before you can use a transform function, you must use the CREATE
TRANSFORM statement to associate the transform function with a group
name and a type. The CREATE TRANSFORM statement identifies one or
more existing functions and causes them to be used as transform functions.
The following example names two pairs of functions to be used as transform
functions for the type Address_t. The statement creates two transform groups,
func_group and client_group, each of which consists of a FROM SQL
transform and a TO SQL transform.
CREATE TRANSFORM FOR Address_t
func_group (FROM SQL WITH FUNCTION addresstofunc,
TO SQL WITH FUNCTION functoaddress)
client_group (FROM SQL WITH FUNCTION stream_to_client,
TO SQL WITH FUNCTION stream from client) ;

You can associate additional functions with the Address_t type by adding
more groups on the CREATE TRANSFORM statement. To alter the transform
definition, you must reissue the CREATE TRANSFORM statement with the
additional functions.

Use the SQL statement DROP TRANSFORM to disassociate transform
functions from types. After you execute the DROP TRANSFORM statement,
the functions will still exist, but they will no longer be used as transform
functions for this type. The following example disassociates the specific group
of transform functions func_group for the Address_t type, and then
disassociates all transform functions for the Address_t type:

DROP TRANSFORMS func_group FOR Address_t;

DROP TRANSFORMS ALL FOR Address_t;

To alter the transform definition, you must reissue the CREATE TRANSFORM
statement with the additional functions. For example, you might want to
customize your client functions for different host language programs, such as
having one for C and one for Java. To optimize the performance of your
application, you might want your transforms to work only with a subset of
the object attributes. Or you might want one transform that uses VARCHAR
as the client representation for an object and one transform that uses BLOB.

Related concepts:

Chapter 8. User-Defined Structured Types 247

248

* ['User-Defined Structured Types” on page 200

* ['Transform Function Requirements” on page 264|

* [‘Specification of Transform Groups” on page 249|

* ['Host Language Program Mappings with Transform Functions” on pagd
252

+ ["Function Transforms” on page 253

* ['Recommendations for Naming Transform Groups” on page 248

Related tasks:

* ['Retrieving and Modifying Structured Type Values in Columns” on page|
243

Related reference:
* “DROP statement” in the SQL Reference, Volume 2
* “CREATE TRANSFORM statement” in the SQL Reference, Volume 2

Recommendations for Naming Transform Groups

Transform group names are unqualified identifiers; that is, they are not
associated with any specific schema. Unless you are writing transforms to
handle subtype parameters, you should not assign a different transform group
name for every structured type. Because you might need to use several
different, unrelated types in the same program or in the same SQL statement,
you should name your transform groups according to the tasks performed by
the transform functions.

The names of your transform groups should generally reflect the function
they perform without relying on type names or in any way reflecting the logic
of the transform functions, which will likely be very different across the
different types. For example, you could use the name func_group or
object_functions for any group in which your TO and FROM SQL function
transforms are defined. You could use the name client_group or
program_group for a group that contains TO and FROM SQL client transforms.

In the following example, the Address_t and Polygon types use very different
transforms, but they use the same function group names

CREATE TRANSFORM FOR Address_t
func_group (TO SQL WITH FUNCTION functoaddress,
FROM SQL WITH FUNCTION addresstofunc);

CREATE TRANSFORM FOR Polygon
func_group (TO SQL WITH FUNCTION functopolygon,
FROM SQL WITH FUNCTION polygontofunc);

Programming Server Applications

Once you set the transform group to func_group in the appropriate situation,
DB2® invokes the correct transform function whenever you bind in or bind
out an address or polygon.

Restriction: You cannot begin a transform group with the string 'SYS’; this
group is reserved for use by DB2.

When you define an external function or method and you do not specify a
transform group name, DB2 attempts to use the name DB2_FUNCTION, and
assumes that that group name was specified for the given structured type. If
you do not specify a group name when you precompile a client program that
references a given structured type, DB2 attempts to use a group name called
DB2_PROGRAM, and again assumes that the group name was defined for
that type.

This default behavior is convenient in some cases, but in a more complex
database schema, you might want a slightly more extensive convention for
transform group names. For example, it may help you to use different group
names for different languages to which you might bind out the type.

Related concepts:

* [“Transform Functions and Transform Groups” on page 246

* [“Specification of Transform Groups” on page 249|

Related reference:
* “CREATE TRANSFORM statement” in the SQL Reference, Volume 2

Specification of Transform Groups

Specification of Transform Groups
Many transform groups can be defined for a given structured type, so you

must specify which group of transforms to use for that type in a program or
specific SQL statement. There are three circumstances in which you must
specify transform groups:

* When an external function or method is defined, you must specify the
group that decomposes and constructs a referenced object.

* When precompiling or binding static SQL, you must specify the group of
transforms that perform client bind in and bind out for a referenced type.

* When executing dynamic SQL, or when using the Command Line
Processor, you must specify the group of transforms that perform client
bind in and bind out for a referenced type.

Related concepts:

* [‘Transform Functions and Transform Groups” on page 246|

Chapter 8. User-Defined Structured Types 249

250

* ['Host Language Program Mappings with Transform Functions” on pagéd
252

Related tasks:
* [‘Specifying Transform Groups for External Routines” on page 250)|

* ['Specifying Transform Groups for Dynamic SQL” on page 250|

* ['Specifying Transform Groups for Static SQL” on page 251

Specifying Transform Groups for External Routines

The CREATE FUNCTION and CREATE METHOD statements enable you to
specify the TRANSFORM GROUP clause, which is only valid when the value
of the LANGUAGE clause is not SQL. SQL language functions do not require
transforms, while external functions do require transforms. The TRANSFORM
GROUP clause allows you to specify, for any given function or method, the
transform group that contains the TO SQL and FROM SQL transforms used
for structured type parameters and results. In the following example, the
CREATE FUNCTION and CREATE METHOD statements specify the
transform group func_group for the TO SQL and FROM SQL transforms:

CREATE FUNCTION stream_from_client (VARCHAR (150))
RETURNS Address_t

TRANSFORM GROUP func_group
EXTERNAL NAME 'addressudf!address_stream_from client'

CREATE METHOD distance (point)
FOR polygon
RETURNS integer

TRANSFORM GROUP func_group ;

Related concepts:

s ['Transform Functions and Transform Groups” on page 246

* [‘Specification of Transform Groups” on page 249|

Related tasks:
* ["Defining Behavior for Structured Types” on page 206|

* ['Specifying Transform Groups for Dynamic SQL” on page 250|

* ['Specifying Transform Groups for Static SQL” on page 251|

Specifying Transform Groups for Dynamic SQL

If you use dynamic SQL, you can set the CURRENT DEFAULT TRANSFORM
GROUP special register. This special register is not used for static SQL
statements or for the exchange of parameters and results with external

Programming Server Applications

functions or methods. Use the SET CURRENT DEFAULT TRANSFORM
GROUP statement to set the default transform group for your dynamic SQL
statements:

SET CURRENT DEFAULT TRANSFORM GROUP = client_group;

Related concepts:

* [‘Transform Functions and Transform Groups” on page 246|

* [“Specification of Transform Groups” on page 249|

Related tasks:

* [‘Specifying Transform Groups for External Routines” on page 250)|

* [‘Specifying Transform Groups for Static SQL” on page 251|

Specifying Transform Groups for Static SQL

For static SQL, use the TRANSFORM GROUP option on the PRECOMPILE or
BIND command to specify the static transform group used by static SQL
statements to exchange values of various types with host programs. Static
transform groups do not apply to dynamic SQL statements or to the exchange
of parameters and results with external functions or methods. To specify the
static transform group on the PRECOMPILE or BIND command, use the
TRANSFORM GROUP clause:

PRECOMPILE ...

TRANSFORM GROUP client_group

LI

Related concepts:

* [“Transform Functions and Transform Groups” on page 246

* [‘Specification of Transform Groups” on page 249|

Related tasks:

* [“Specifying Transform Groups for External Routines” on page 250

* [‘Specifying Transform Groups for Dynamic SQL” on page 250

Related reference:
* “BIND Command” in the Command Reference
* “PRECOMPILE Command” in the Command Reference

Chapter 8. User-Defined Structured Types 251

Creating the Mapping to the Host Language Program

252

Host Language Program Mappings with Transform Functions

An application cannot directly select an entire object, although you can select
individual attributes of an object into an application. An application usually
does not directly insert an entire object, although it can insert the result of an
invocation of the constructor function:

INSERT INTO Employee(Address) VALUES (Address t());

To exchange whole objects between the server and client applications, or
external functions, you must normally write transform functions.

A transform function defines how DB2® converts an object into a well-defined
format for accessing its contents, or binds out the object. A different transform
function defines how DB2 returns the object to be stored in the database, or
binds in the object. Transforms that bind out an object are called FROM SQL
transform functions, and transforms that bind in a column object are called
TO SQL transforms.

Most likely, there will be different transforms for passing objects to routines, or
external UDFs and methods, than those for passing objects to client
applications. This is because when you pass the object to an external routine,
you decompose the object and pass it to the routine as a list of parameters.
With client applications, you must turn the object into a single built-in type,
such as a BLOB. This process is called encoding the object. Often these two
types of transforms are used together.

Use the SQL statement CREATE TRANSFORM to associate transform
functions with a particular structured type. Within the CREATE TRANSFORM
statement, the functions are paired into what are called transform groups. This
makes it easier to identify which functions are used for a particular transform
purpose. Each transform group can contain not more than one FROM SQL
transform, and not more than one TO SQL transform, for a particular type.

Related concepts:

* ["Transform Function Requirements” on page 264|

* ['Transform Functions and Transform Groups” on page 246

* ['Function Transforms” on page 253

* ['Client Transforms” on page 259

Related tasks:

* ['Implementing Function Transforms Using SQL-bodied Routines” on page]
D55

* ['Passing Structured Type Parameters to External Routines” on page 257

Programming Server Applications

Related reference:
¢ “CREATE TRANSFORM statement” in the SQL Reference, Volume 2

Function Transforms

DB2® uses TO SQL and FROM SQL function transforms to pass an object to
and from an external routine. There is no need to use transforms for
SQL-bodied routines. However, DB2 often uses these functions as part of the
process of passing an object to and from a client program.

The following example issues an SQL statement that invokes an external UDF
called MYUDF that takes an address as an input parameter, modifies the address
(to reflect a change in street names, for example), and returns the modified
address:

SELECT MYUDF (Address)
FROM PERSON;

[Figure 11 on page 254| shows how DB2 processes the address.

Chapter 8. User-Defined Structured Types 253

254

> SELECT MYUDF(Address) FROM Person;

:

structured type input

1. FROM SQL function transform

| | | |
VARCHAR CHAR VARCHAR VARCHAR

| =1 ¢

MYUDF (varchar, char, varchar, varchar)
input parameters

2. The external code which implements MYUDF operates on 4 parameters
...and returns 4 output parameters.

structured type input

3. TO SQL function transform

| | | |
VARCHAR CHAR VARCHAR VARCHAR

| R |

(varchar, char, varchar, varchar)
structured type output

Figure 11. Exchanging a structured type parameter with an external routine

1. Your FROM SQL transform function decomposes the structured object into

an ordered set of its base attributes. This enables the routine to receive the
object as a simple list of parameters whose types are basic built-in data
types. For example, assume that you want to pass an address object to an
external routine. The attributes of Address_t are VARCHAR, CHAR,
VARCHAR, and VARCHAR, in that order. The FROM SQL transform for
passing this object to a routine must accept this object as an input and
return VARCHAR, CHAR, VARCHAR, and VARCHAR. These outputs are
then passed to the external routine as four separate parameters, with four

Programming Server Applications

corresponding null indicator parameters, and a null indicator for the
structured type itself. The order of parameters in the FROM SQL function
does not matter, as long as all functions that return Address_t types use
the same order.

2. Your external routine accepts the decomposed address as its input
parameters, does its processing on those values, and then returns the
attributes as output parameters.

3. Your TO SQL transform function must turn the VARCHAR, CHAR,
VARCHAR, and VARCHAR parameters that are returned from MYUDF back
into an object of type Address_t. In other words, the TO SQL transform
function must take the four parameters, and all of the corresponding null
indicator parameters, as output values from the routine. The TO SQL
function constructs the structured object and then mutates the attributes
with the given values.

Note: If MYUDF also returns a structured type, another transform function must
transform the resultant structured type when the UDF is used in a
SELECT clause. To avoid creating another transform function, you can
use SELECT statements with observer methods, as in the following
example:

SELECT Name

FROM Employee
WHERE MYUDF (Address)..city LIKE 'Tor%';

Related concepts:

* [“Transform Functions and Transform Groups” on page 246

* ["Host Language Program Mappings with Transform Functions” on page
252

* [‘Client Transforms” on page 259

Related tasks:

* [Implementing Function Transforms Using SQL-bodied Routines” on page]
D55

* [‘Passing Structured Type Parameters to External Routines” on page 257

Implementing Function Transforms Using SQL-bodied Routines

To decompose and construct objects when exchanging the object with an
external routine, you must use user-defined functions written in SQL, called
SQL-bodied functions. To create a SQL-bodied function, issue a CREATE
FUNCTION statement with the LANGUAGE SQL clause.

In your SQL-bodied function, you can use constructors, observers, and

mutators to achieve the transformation. This SQL-bodied transform intervenes
between the SQL statement and the external function. The FROM SQL

Chapter 8. User-Defined Structured Types 255

transform takes the object as an SQL parameter and returns a row of values
representing the attributes of the structured type. The following example
contains a possible FROM SQL transform function for an address object using
a SQL-bodied function:

CREATE FUNCTION addresstofunc (A Address_t)

RETURNS ROW (Street VARCHAR(30), Number CHAR(15),
City VARCHAR(30), State (VARCHAR(10)) H

LANGUAGE SQL
RETURN VALUES (A..Street, A..Number, A..City, A..State)

The following list explains the syntax of the preceding CREATE FUNCTION
statement:

1. The signature of this function indicates that it accepts one parameter, an
object of type Address_t.

2. The RETURNS ROW clause indicates that the function returns a row
containing four columns: Street, Number, City, and State.

3. The LANGUAGE SQL clause indicates that this is an SQL-bodied function,
not an external function.

4. The RETURN clause marks the beginning of the function body. The body
consists of a single VALUES clause that invokes the observer method for
each attribute of the Address_t object. The observer methods decompose
the object into a set of base types, which the function returns as a row.

DB2 does not know that you intend to use this function as a transform
function. Until you create a transform group that uses this function, and then
specify that transform group in the appropriate situation, DB2 cannot use the
function as a transform function.

The TO SQL transform simply does the opposite of the FROM SQL function.
It takes as input the list of parameters from a routine and returns an instance
of the structured type. To construct the object, the following FROM SQL
function invokes the constructor function for the Address_t type:
CREATE FUNCTION functoaddress (street VARCHAR(30), number CHAR(15),
city VARCHAR(30), state VARCHAR(10))
RETURNS Address_ t H
LANGUAGE SQL
CONTAINS SQL
RETURN
Address_t()..street(street)..number (number)
..city(city)..state(state) H

The following list explains the syntax of the previous statement:
1. The function takes a set of base type attributes.
2. The function returns an Address_t structured type.

256 Programming Server Applications

3. The function constructs the object from the input types by invoking the
constructor for Address_t and the mutators for each of the attributes.

The order of parameters in the FROM SQL function does not matter, other
than that all functions that return addresses using this transform function

must use this same order.

Related concepts:

* [‘Function Transforms” on page 253

Related reference:

* “CREATE FUNCTION (SQL Scalar, Table or Row) statement” in the SQL
Reference, Volume 2

Passing Structured Type Parameters to External Routines

When you pass structured type parameters to an external routine, you should
pass a parameter for each attribute. You must pass a null indicator for each
parameter and a null indicator for the structured type itself. The following
example accepts the structured type Address_t and returns a base type:

CREATE FUNCTION stream_to_client (Address_t)
RETURNS VARCHAR(150) ...

The external routine must accept the null indicator for the instance of the
Address_t type (address_ind) and one null indicator for each of the attributes
of the Address_t type. There is also a null indicator for the VARCHAR output
parameter. The following code represents the C language function headers for
the functions that implement the UDFs:

void SQL_API_FN stream to client(

/* decomposed address x/
SQLUDF_VARCHAR =*street,
SQLUDF_CHAR =*number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR =*state,

/* VARCHAR output */
SQLUDF_VARCHAR =output,

/* null indicators for type attributes */
SQLUDF_NULLIND =*street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city ind,

SQLUDF_NULLIND =*state_ind,

/* null indicator for instance of the type */
SQLUDF_NULLIND *address_ind,

/* null indicator for the VARCHAR output */
SQLUDF_NULLIND =*out_ind,
SQLUDF_TRAIL_ARGS)

Suppose that the routine accepts two different structured type parameters, st1
and st2, and returns another structured type of st3:

Chapter 8. User-Defined Structured Types 257

CREATE FUNCTION myudf (int, stl, st2)
RETURNS st3

Table 14. Attributes of myudf parameters

ST1 ST2 ST3

stl_attl VARCHAR st2_attl VARCHAR st3_attl INTEGER

st2_att2 INTEGER st2_att2 CHAR st3_att2 CLOB
st2_att3 INTEGER

The following code represents the C language headers for routines that
implement the UDFs. The arguments include variables and null indicators for
the attributes of the decomposed structured type and a null indicator for each
instance of a structured type, as follows:

void SQL_API_FN myudf(
SQLUDF_INTEGER *INT,

/* Decomposed stl input =/
SQLUDF_VARCHAR =*stl attl,
SQLUDF_INTEGER =*stl att2,

/* Decomposed st2 input */
SQLUDF_VARCHAR =*st2_attl,
SQLUDF_CHAR *st2_att2,
SQLUDF_INTEGER =*st2_att3,

/* Decomposed st3 output */
SQLUDF_VARCHAR =*st3 attlout,
SQLUDF_CLOB *st3_att2out,

/* Null indicator of integer =/
SQLUDF_NULLIND *INT_ind,

/* Null indicators of stl attributes and type */
SQLUDF_NULLIND =*stl_attl_ind,
SQLUDF_NULLIND *st1_att2_ind,
SQLUDF_NULLIND =*stl ind,

/* Null indicators of st2 attributes and type */
SQLUDF_NULLIND *st2_attl ind,
SQLUDF_NULLIND =*st2_att2_ind,
SQLUDF_NULLIND *st2_att3_ind,
SQLUDF_NULLIND *st2_ind,

/* Null indicators of st3_out attributes and type x/
SQLUDF_NULLIND =*st3 attl ind,
SQLUDF_NULLIND *st3_att2_ind,
SQLUDF_NULLIND *st3_ind,

/* trailing arguments */
SQLUDF_TRAIL_ARGS

)

Related concepts:

+ ["Transform Functions and Transform Groups” on page 246

* ['Host Language Program Mappings with Transform Functions” on page
252

258 Programming Server Applications

* [‘Function Transforms” on page 253

* [‘Client Transforms” on page 259

Related tasks:

¢ [Implementing Client Transforms for Binding in from a Client Using|
External UDFs” on page 263

Client Transforms

Client transforms exchange structured types with client application programs.
For example, assume that you want to execute the following SQL statement:

SQL TYPE IS Address_t AS VARCHAR(150) addhv;

EXEC SQL SELECT Address
FROM Person
INTO :addhv
WHERE AGE > 25

END EXEC;

[Figure 12 on page 260|shows the process of binding out that address to the
client program.

Chapter 8. User-Defined Structured Types 259

SELECT Address FROM Person INTO: addhv WHERE...;

1. FROM SQL function transform

;

flattened address attributes

2. FROM SQL client transform

VARCHAR

Server

3. After retrieving the address as a VARCHAR,
the client can decode its attributes and
access them as desired.

Figure 12. Binding out a structured type to a client application

1. The object must first be passed to the FROM SQL function transform to
decompose the object into its base type attributes.

2. Your FROM SQL client transform must encode the value into a single
built-in type, such as a VARCHAR or BLOB. This enables the client
program to receive the entire value in a single host variable.

This encoding can be as simple as copying the attributes into a contiguous
area of storage (providing for required alignments as necessary). Because
the encoding and decoding of attributes cannot generally be achieved with
SQL, client transforms are usually written as external UDFs.

3. The client program processes the value.

[Figure 13 on page 261|shows the reverse process of passing the address back
to the database.

260 Programming Server Applications

INSERT INTO Person (Address) VALUES (:addhv);

Client

Server
1. TO SQL function transform

|

decomposed Address_t attributes

2.TO SQL client transform

|

Address_t

3. Before sending the address as an instance of type
Address_t, the client invokes the TO SQL function
transform to decompose the host variable into
Address_t attributes, then invokes the TO SQL
client transform to construct an instance of
Address_t, which the server inserts into the table.

Figure 13. Binding in a structured type from a client

1. The client application encodes the address into a format expected by the
TO SQL client transform.

2. The TO SQL client transform decomposes the single built-in type into a set
of its base type attributes, which is used as input to the TO SQL function
transform.

3. The TO SQL function transform constructs the address and returns it to
the database.

Include the TRANSFORM GROUP clause to tell DB2® which set of transforms
to use in processing the address type in the given function.

Related concepts:

* ["Host Language Program Mappings with Transform Functions” on page
252

* ["Function Transforms” on page 253

Related tasks:
* [Implementing Client Transforms Using External UDFs” on page 262|

Chapter 8. User-Defined Structured Types 261

262

* [Implementing Client Transforms for Binding in from a Client Using]
External UDFs” on page 263

Implementing Client Transforms Using External UDFs

Register the client transforms the same way as any other external UDF. For
example, assume that you have written external UDFs that do the appropriate
encoding and decoding for an address. Suppose that you have named the
FROM SQL client transform from_sql_to_client and the TO SQL client
transform to_sql_from_client. In both of these cases, the output of the
functions are in a format that can be used as input by the appropriate FROM
SQL and TO SQL function transforms.
CREATE FUNCTION from_sql_to_client (Address_t)

RETURNS VARCHAR (150)

LANGUAGE C

TRANSFORM GROUP func_group

EXTERNAL NAME 'addressudf!address from sql to client'

NOT VARIANT

NO EXTERNAL ACTION

NOT FENCED

NO SQL

PARAMETER STYLE SQL;

The DDL in the previous example makes it seem as if the from_sql_to_client
UDF accepts a parameter of type Address_t. What really happens is that, for
each row for which the from_sql_to_client UDF is invoked, the
Addresstofunc transform decomposes the Address into its various attributes.
The from_sql_to_client UDF produces a simple character string and formats
the address attributes for display, allowing you to use the following simple
SQL query to display the Name and Address attributes for each row of the
Person table:

SELECT Name, from sql to client (Address)
FROM Person;

Notice that the DDL in from_sql_to_client includes a clause called
TRANSFORM GROUP. This clause tells DB2 which set of transforms to use in

processing the address type in those functions.

Related concepts:

* [‘Client Transforms” on page 259

Related tasks:
* ['Passing Structured Type Parameters to External Routines” on page 257

* [Implementing Client Transforms for Binding in from a Client Using]
External UDFs” on page 263

Programming Server Applications

Implementing Client Transforms for Binding in from a Client Using
External UDFs

The following DDL registers a function that takes the VARCHAR-encoded
object from the client, decomposes it into its various base type attributes, and
passes it to the TO SQL function transform.
CREATE FUNCTION to_sql_from_client (VARCHAR (150))

RETURNS Address_t

LANGUAGE C

TRANSFORM GROUP func_group

EXTERNAL NAME 'addressudfl!address_to_sql_from_client'

NOT VARIANT

NO EXTERNAL ACTION

NOT FENCED

NO SQL

PARAMETER STYLE SQL;

Although it appears as if the to_sql_from_client returns the address directly,
what really happens is that to_sql_from_client converts the VARCHAR (150)
to a set of base type attributes. Then DB2 implicitly invokes the TO SQL
transform functoaddress to construct the address object that is returned to the
database.

Notice that the DDL in to_sql_from_client includes a clause called
TRANSFORM GROUP. This clause tells DB2 which set of transforms to use in

processing the address type in those functions.

Related concepts:

+ [“Client Transforms” on page 259|

Related tasks:
* [Implementing Client Transforms Using External UDFs” on page 262|

Data Conversion Considerations

When data, especially binary data, is exchanged between server and client,
there are several data conversion issues to consider. For example, when data
is transferred between platforms with different byte-ordering schemes,
numeric data must undergo a byte-reversal process to restore its correct
numeric value. Different operating systems also have certain alignment
requirements for referencing numeric data in memory; some operating
systems will cause program exceptions if these requirements are not observed.
Character data types are automatically converted by the database, except
when character data is embedded in a binary data type such as BLOB or a
VARCHAR FOR BIT DATA.

There are two ways to avoid data conversion problems:

Chapter 8. User-Defined Structured Types 263

* Always transform objects into printable character data types, including
numeric data.

This approach has the disadvantages of slowing performance, due to the
many potential conversions required, and increasing the complexity of code
accessing these objects, such as on the client or in the transform function
itself.

* Devise a platform-neutral format for an object transformed into a binary
data type, similar to the approach that is taken by Java = implementations.
Be sure to:

— Take care when packing or unpacking these compacted objects to
properly encode or decode the individual data types and to avoid data
corruption or program faults.

— Include sufficient header information in the transformed type so that the
remainder of the encoded object can be correctly interpreted independent
of the client or server platform.

— Use the DBINFO option of CREATE FUNCTION to pass to the transform
function various characteristics related to the database server
environment. These characteristics can be included in the header in a
platform-neutral format.

As much as possible, write transform functions so that they correctly handle
all of the complexities associated with the transfer of data between server and
client. When you design your application, consider the specific requirements
of your environment and evaluate the tradeoffs between complete generality
and simplicity. For example, if you know that both the database server and all
of its clients run in an AIX® environment and use the same code page, you
could decide to ignore the previously discussed considerations, because no
conversions are currently required. However, if your environment changes in
the future, you may have to exert considerable effort to revise your original
design to correctly handle data conversion.

Related concepts:

* ["Transform Functions and Transform Groups” on page 246

* ['Host Language Program Mappings with Transform Functions” on pagéd
P52

* ['Function Transforms” on page 253

Transform Function Requirements

[Table 15 on page 269 is intended to help you determine what transform
functions you need, depending on whether you are binding out to an external
routine or a client application.

264 Programming Server Applications

Table 15. Characteristics of transform functions

Characteristic | Exchanging values with an Exchanging values with a client
external routine application
Transform FROM SQL TO SQL FROM SQL TO SQL
direction
What is being | Routine Routine result | Output host Input host
transformed parameter variable variable
Behavior Decomposes Constructs Encodes Decodes
Transform Structured type |Row of built-in |Structured type |One built-in
function types type
parameters
Transform Row of built-in | Structured type |One built-in Structured type
function result |types (probably type
attributes)
Dependent on | No No FROM SQL TO SQL UDF
another UDF transform | transform
transform?
When is the At the time the UDF is registered | Static: precompile time
transform Dynamic: Special register
group
specified?
Are there data |No Yes
conversion
considerations?

Note: Although not generally the case, client type transforms can actually be
written in SQL if any of the following are true:

* The structured type contains only one attribute.

* The encoding and decoding of the attributes into a built-in type can
be achieved by some combination of SQL operators or functions.

In these cases, you do not have to depend on function transforms to
exchange the values of a structured type with a client application.

Related concepts:

* [“Transform Functions and Transform Groups” on page 246

Related tasks:

* [‘Retrieving Subtype Data from DB2” on page 266|

Chapter 8. User-Defined Structured Types

265

Retrieving Subtype Data from DB2

If your data model takes advantage of subtypes, a value in a column could be
one of many different subtypes. You can dynamically choose the correct
transform functions based on the actual input type.

Suppose you want to issue the following SELECT statement:

SELECT Address
FROM Person
INTO :hvaddr;

The application has no way of knowing whether an instance of Address_t,
US_addr_t, or so on, will be returned. To keep the example from being too
complex, let us assume that only Address_t or US_addr_t can be returned. The
structures of these types are different, so the transforms that decompose the
attributes must be different. To ensure that the proper transforms are invoked:

Step 1. Create a FROM SQL function transform for each variation of address:

CREATE FUNCTION addresstofunc(A address_t)
RETURNS ROW
(Street VARCHAR(30), Number CHAR(15), City
VARCHAR(30), STATE VARCHAR (10))
LANGUAGE SQL
RETURN VALUES
(A..Street, A..Number, A..City, A..State)

CREATE FUNCTION US_addresstofunc(A US_addr_t)
RETURNS ROW
(Street VARCHAR(30), Number CHAR(15), City
VARCHAR(30), STATE VARCHAR (10), Zip
CHAR(10))
LANGUAGE SQL
RETURN VALUES
(A..Street, A..Number, A..City, A..State, A..Zip)

Step 2. Create transform groups, one for each type variation:
CREATE TRANSFORM FOR Address_t
funcgroupl (FROM SQL WITH FUNCTION addresstofunc)
CREATE TRANSFORM FOR US_addr_t
funcgroup2 (FROM SQL WITH FUNCTION US_addresstofunc)
Step 3. Create external UDFs, one for each type variation.
Register the external UDF for the Address_t type:

CREATE FUNCTION address_to_client (A Address_t)
RETURNS VARCHAR(150)
LANGUAGE C
EXTERNAL NAME 'addressudf!address_to_client'

TRANSFORM GROUP funcgroupl

Write the address_to_client UDF:

266 Programming Server Applications

void SQL_API_FN address_to_client(

}

SQLUDF_VARCHAR =street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR =*city,

SQLUDF_VARCHAR =state,
SQLUDF_VARCHAR =output,

/* Null indicators for attributes */
SQLUDF_NULLIND =*street_ind,
SQLUDF_NULLIND #*number_ind,
SQLUDF_NULLIND =*city_ind,
SQLUDF_NULLIND =state_ind,

/* Null indicator for instance */
SQLUDF_NULLIND =*address_ind,

/* Null indicator for output */
SQLUDF_NULLIND *output_ind,
SQLUDF_TRAIL_ARGS)

sprintf (output, "[address_t] [Street:%s] [number:%s]
[city:%s] [state:%s]",

street, number, city, state);

*xoutput_ind = 0;

Register the external UDF for the US_addr_t type:

CREATE FUNCTION address_to_client (A US_addr_t)

RETURNS VARCHAR(150)
LANGUAGE C
EXTERNAL NAME 'addressudf!US_addr_to_client'

TRANSFORM GROUP funcgroup?2

Write the US_addr_to_client UDF:
void SQL_API_FN US_address_to_client(

SQLUDF_VARCHAR
SQLUDF_CHAR
SQLUDF_VARCHAR
SQLUDF_VARCHAR
SQLUDF_CHAR
SQLUDF_VARCHAR

*street,
*number,
*City,
*state,
*Z1ip,
*output,

/* Null indicators */

SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND

*street_ind,
*number_ind,
*city_ind,
xstate_ind,
*zip_ind,
*us_address_ind,
*xoutput_ind,

SQLUDF_TRAIL_ARGS)

sprintf (output, "[US_addr_t] [Street:%s] [number:%s]

Chapter 8. User-Defined Structured Types

267

268

[city:%s] [state:%s] [zip:%s]",
street, number, city, state, zip);
*output_ind = 0;

}

Step 4. Create a SQL-bodied UDF that chooses the correct external UDF to
process the instance. The following UDF uses the TREAT specification
in SELECT statements combined by a UNION ALL clause to invoke
the correct FROM SQL client transform:

CREATE FUNCTION addr_stream (ab Address_t)

RETURNS VARCHAR(150)

LANGUAGE SQL

RETURN

WITH temp(addr) AS

(SELECT address_to_client(ta.a)
FROM TABLE (VALUES (ab)) AS ta(a)
WHERE ta.a IS OF (ONLY Address_t)
UNION ALL

SELECT address_to_client(TREAT (tb.a AS US_addr_t))
FROM TABLE (VALUES (ab)) AS tb(a)
WHERE tb.a IS OF (ONLY US_addr t))

SELECT addr FROM temp;

At this point, applications can invoke the appropriate external UDF
by invoking the Addr_stream function:
SELECT Addr_stream(Address)
FROM Employee;
Step 5. Add the Addr_stream external UDF as a FROM SQL client transform
for Address_t:
CREATE TRANSFORM GROUP FOR Address_t

client_group (FROM SQL
WITH FUNCTION Addr_stream)

Note: If your application might use a type predicate to specify
particular address types in the query, add Addr_stream as a
FROM SQL to client transform for US_addr_t. This ensures that
Addr_stream can be invoked when a query specifically requests
instances of US_addr_t.

Step 6. Bind the application with the TRANSFORM GROUP option set to
client_group.
PREP myprogram TRANSFORM GROUP client_group

When DB2 binds the application that contains the SELECT Address FROM
Person INTO :hvar statement, DB2 looks for a FROM SQL client transform.
DB2 recognizes that a structured type is being bound out, and looks in the
transform group client_group because that is the TRANSFORM GROUP
specified at bind time in Step Ia

Programming Server Applications

The transform group contains the transform function Addr_stream associated
with the root type Address_t in Step Addr_streamis a
SQL-bodied function, defined in Step so it has no dependency
on any other transform function. The Addr_stream function returns
VARCHAR(150), the data type required by the :hvaddr host variable.

The Addr_stream function takes an input value of type Address_t, which can
be substituted with US_addr_t in this example, and determines the dynamic
type of the input value. When Addr_stream determines the dynamic type, it
invokes the corresponding external UDF on the value: address_to_client if
the dynamic type is Address_t; or USaddr_to_client if the dynamic type is
US_addr_t. These two UDFs are defined in Step Each UDF
decomposes their respective structured type to VARCHAR(150), the type
required by the Addr_stream transform function.

To accept the structured types as input, each UDF needs a FROM SQL
transform function to decompose the input structured type instance into
individual attribute parameters. The CREATE FUNCTION statements in Step
name the TRANSFORM GROUP that contains these transforms.

The CREATE FUNCTION statements for the transform functions are issued in
Step The CREATE TRANSFORM statements that associate the
transform functions with their transform groups are issued in Step

Related concepts:

* [“Transform Function Requirements” on page 264|

* [“Transform Functions and Transform Groups” on page 246

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Returning Subtype Data to DB2

Suppose you want to insert a structured type into a DB2 database from an
application using the following syntax:

INSERT INTO person (0id, Name, Address)
VALUES ('n', 'Norm', :hvaddr);

To execute the INSERT statement for a structured type:

Step 1. Create a TO SQL function transform for each variation of address.
The following example shows SQL-bodied UDFs that transform the
Address_t and US_addr_t types:

CREATE FUNCTION functoaddress
(str VARCHAR(30), num CHAR(15), cy VARCHAR(30), st VARCHAR (10))
RETURNS Address_t

Chapter 8. User-Defined Structured Types 269

LANGUAGE SQL
RETURN Address_t()..street(str)..number(num)..city(cy)..state(st);

CREATE FUNCTION functoaddress
(str VARCHAR(30), num CHAR(15), cy VARCHAR(30), st VARCHAR (10),
zp CHAR(10))
RETURNS US_addr_t
LANGUAGE SQL
RETURN US_addr_t()..street(str)..number(num)..city(cy)
..state(st)..zip(zp);

Step 2. Create transform groups, one for each type variation:

CREATE TRANSFORM FOR Address_t
funcgroupl (TO SQL
WITH FUNCTION functoaddress);

CREATE TRANSFORM FOR US_addr_t
funcgroup2 (TO SQL
WITH FUNCTION functousaddr);
Step 3. Create external UDFs that return the encoded address types, one for
each type variation.
Register the external UDF for the Address_t type:

CREATE FUNCTION client_to_address (encoding VARCHAR(150))
RETURNS Address_t
LANGUAGE C
TRANSFORM GROUP funcgroupl

EXTERNAL NAME 'address!client_to_address';

Write the external UDF for the Address_t version of
client_to_address:

void SQL_API FN client to_address (

270

SQLUDF_VARCHAR
SQLUDF_VARCHAR
SQLUDF_CHAR

SQLUDF_VARCHAR
SQLUDF_VARCHAR

*encoding,
*street,
*number,
*City,
*state,

/* Null indicators */

SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND

*encoding_ind,
*street_ind,
*number_ind,
*city_ind,
xstate_ind,
xaddress_ind,

SQLUDF_TRAIL_ARGS)

char c[150];
char *pc;

strcpy(c, encoding);

pc =

Programming Server Applications

strtok (c, ":]1");

}

pc = strtok (NULL, ":1")
pc strtok (NULL, ":1")
strcpy (street, pc);
pc = strtok (NULL, ":]1");
pc = strtok (NULL, ":]");
strcpy (number, pc);

pc = strtok (NULL, ":]1");
pc = strtok (NULL, ":]1");
strcpy (city, pc);

pc = strtok (NULL, ":]1");

pc = strtok (NULL, ":]
strcpy (state, pc);

*street_ind = *number_ind = *city_ind
= xstate_ind = *address_ind = 0;

Register the external UDF for the US_addr_t type:
CREATE FUNCTION client to_us_address (encoding VARCHAR(150))

RETURNS US_addr_t
LANGUAGE C
TRANSFORM GROUP funcgroupl

EXTERNAL NAME 'address!client_to_US addr';

Write the external UDF for the US_addr_t version of
client_to_address:

void SQL_API_FN client_to US_addr(

SQLUDF_VARCHAR =*encoding,
SQLUDF_VARCHAR =*street,
SQLUDF _CHAR *number,

SQLUDF:VARCHAR
SQLUDF_VARCHAR
SQLUDF_VARCHAR

*City,
*state,
*Zip,

/* Null indicators */

SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND
SQLUDF_NULLIND

*encoding_ind,
*street_ind,
*number_ind,
*city_ind,
*state_ind,
*zip_ind,
*us_addr_ind,

SQLUDF_TRAIL_ARGS)

char c[150];
char *pc;

strcpy(c, encoding);

strtok (c, ":]");
strtok (NULL, ":1");

pc
pc

Chapter 8. User-Defined Structured Types

271

272

pc = strtok (NULL, ":1");
strcpy (street, pc);
pc = strtok (NULL, ":]
pc = strtok (NULL, ":]
strncpy (number, pc,14
pc = strtok (NULL, ":]
pc = strtok (NULL, ":]
strcpy (city, pc)s;

pc = strtok (NULL, ":1");
pc = strtok (NULL, ":]1");
strcpy (state, pc);

pc = strtok (NULL, ":1");
pc = strtok (NULL, ":1");
strncpy (zip, pc, 9);

*xstreet_ind = *number_ind = *city_ind
= xstate_ind = *zip_ind = *us_addr_ind = 0;
}
Step 4. Create a SQL-bodied UDF that chooses the correct external UDF for
processing that instance. The following UDF uses the TYPE predicate
to invoke the correct to client transform. The results are placed in a
temporary table:
CREATE FUNCTION stream address (ENCODING VARCHAR(150))
RETURNS Address_t
LANGUAGE SQL
RETURN
(CASE(SUBSTR(ENCODING,2,POSSTR(ENCODING,']")-2))
WHEN 'address_t'
THEN client_to_address(ENCODING)
WHEN 'us_addr_t'
THEN client_to_us_addr(ENCODING)
ELSE NULL
END);
Step 5. Add the stream_address UDF as a TO SQL client transform for
Address_t:
CREATE TRANSFORM FOR Address_t
client_group (TO SQL
WITH FUNCTION stream address);
Step 6. Bind the application with the TRANSFORM GROUP option set to
client_group.

PREP myProgram2 TRANSFORM GROUP client_group

When the application containing the INSERT statement with a structured type
is bound, DB2 looks for a TO SQL client transform. DB2 looks for the
transform in the transform group client_group because that is the
TRANSFORM GROUP specified at bind time in Step@ DB2 finds the
transform function it needs: stream_address, which is associated with the root
type Address_t in Step E

Programming Server Applications

stream_address is a SQL-bodied function, defined in Step so it
has no stated dependency on any additional transform function. For input
parameters, stream_address accepts VARCHAR(150), which corresponds to
the application host variable :hvaddr. stream_address returns a value that is
both of the correct root type, Address_t, and of the correct dynamic type.

stream_address parses the VARCHAR(150) input parameter for a substring
that names the dynamic type: in this case, either “Address_t" or ‘US_addr_t".
stream_address then invokes the corresponding external UDF to parse the
VARCHAR(150) and returns an object of the specified type. There are two
client_to_address() UDFs, one to return each possible type. These UDFs are
defined in Step Each UDF takes the input VARCHAR(150), and
internally constructs the attributes of the appropriate structured type, thus
returning the structured type.

To return the structured types, each UDF needs a TO SQL transform function
to construct the output attribute values into an instance of the structured type.
The CREATE FUNCTION statements in Step name the
TRANSFORM GROUP that contains the transforms.

The SQL-bodied transform functions from Step |1 on page 269|, and the
associations with the transform groups from Step [2 on page 270 are named in
the CREATE FUNCTION statements of Step [3 on page 270]

Related concepts:

* [“Transform Function Requirements” on page 264|

* [“Transform Functions and Transform Groups” on page 246

Related reference:
* “CREATE FUNCTION statement” in the SQL Reference, Volume 2

Structured Type Host Variables

Declaring Structured Type Host Variables

To retrieve or send structured type host variables in static SQL, you must
provide an SQL declaration that indicates the built-in type used to represent
the structured type. The format of the declaration is as follows:

EXEC SQL BEGIN DECLARE SECTION ;
SQL TYPE IS structured _type AS base_type host-variable-name ;

EXEC SQL END DECLARE SECTION;

Chapter 8. User-Defined Structured Types 273

274

For example, assume that the type Address_t is to be transformed to a
varying-length character type when passed to the client application. Use the
following declaration for the Address_t type host variable:

SQL TYPE IS Address_t AS VARCHAR(150) addrhv;

Related concepts:

. I”Transform Functions and Transform Groups” on page 246|

Related tasks:
* ["Describing a Structured Type” on page 274

Describing a Structured Type

A DESCRIBE of a statement with a structured type variable causes DB2 to put
a description of the result type of the FROM SQL transform function in the
SQLTYPE field of the base SQLVAR of the SQLDA. However, if there is no
FROM SQL transform function defined, either because no TRANSFORM
GROUP was specified using the CURRENT DEFAULT TRANSFORM GROUP
special register or because the named group does not have a FROM SQL
transform function defined, DESCRIBE returns an error.

The actual name of the structured type is returned in SQLVAR?2.

Related concepts:

+ [“Transform Functions and Transform Groups” on page 246

Related tasks:
* ["Declaring Structured Type Host Variables” on page 273

Programming Server Applications

Chapter 9. Triggers

Triggers in Application Development . . . 275 Triggered Action: Conditions 290
INSERT, UPDATE, and DELETE Triggers 278 Triggered Action: SQL Statements . . . 291
Trigger Interactions with Referential Triggered Action: Functions 292
Constraints . . . o029 Multiple Triggers 293
INSTEAD OF Tr1ggers0 279 Synergy Between Triggers, Constramts, and
Trigger Creation Guidelines 281 Routines 294
Creating Triggers282 Extracting Informatlon from UDTS UDFs
Trigger Granularity283 and LOBs with Triggers. . . . 294
Trigger Activation Time. 284 Preventing Operations on Tables Usmg
Transition Variables286 Triggers 296
Transition Tables 288 Defining Business Rules Usmg Trlggers 297
Triggered Action28 Defining Actions Using Triggers 297
Triggered Action289

Triggers in Application Development

In order to change your database manager from a passive system to an active
one, use the capabilities embodied in a trigger function. A trigger defines a set
of actions that are activated or triggered by a modify operation (insert, update,
or delete) on a specified base table. These actions may cause other changes to
the database, perform operations outside DB2® (for example, send an e-mail
or write a record in a file), raise an exception to prevent the modify operation
from taking place, and so on.

You can use triggers to support general forms of integrity such as business
rules. For example, your business may wish to refuse orders that exceed its
customers’ credit limit. A trigger can be used to enforce this constraint. In
general, triggers are powerful mechanisms to capture transitional business
rules. Transitional business rules are rules that involve different states of the
data.

For example, suppose a salary cannot be increased by more than 10 per cent.
To check this rule, the value of the salary before and after the increase must
be compared. For rules that do not involve more than one state of the data,
check and referential integrity constraints may be more appropriate. Because
of the declarative semantics of check and referential constraints, their use is
recommended for constraints that are not transitional.

You can also use triggers for tasks such as automatically updating summary
data. By keeping these actions as a part of the database and ensuring that

© Copyright IBM Corp. 1993 - 2002 275

276

they occur automatically, triggers enhance database integrity. For example,
suppose you want to automatically track the number of employees managed
by a company:
Tables: EMPLOYEE (from the Sample Tables)
COMPANY_STATS (NBEMP, NBPRODUCT, REVENUE)

You can define two triggers:

* A trigger that increments the number of employees each time a new person
is hired, that is, each time a new row is inserted into the table EMPLOYEE:
CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1
* A trigger that decrements the number of employees each time an employee
leaves the company, that is, each time a row is deleted from the table
EMPLOYEE:
CREATE TRIGGER FORMER_EMP
AFTER DELETE ON EMPLOYEE

FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

Specifically, you can use triggers to:

* Validate input data using the SIGNAL SQLSTATE SQL statement, the
built-in RAISE_ERROR function, or invoke a UDF to return an SQLSTATE
indicating that an error has occurred if invalid data is discovered. Note that
validation of non-transitional data is usually better handled by check and
referential constraints. By contrast, triggers are appropriate for validation of
transitional data, that is, validations which require comparisons between the
value before and after an update operation.

* Automatically generate values for newly inserted rows (this is known as a
surrogate function). That is, to implement user-defined default values,
possibly based on other values in the row or values in other tables. To
implement functionally dependent columns DB2 also supports
GENERATED columns. These are columns whose values are always
derived in a deterministic fashion from other values in the same row.

* Read from other tables for cross-referencing purposes.
* Write to other tables for audit-trail purposes.

* Support alerts (for example, through electronic mail messages).

Using triggers in your database manager can result in:
* Faster application development.

Because triggers are stored in the relational database, the actions performed
by triggers do not have to be coded in each application.

¢ Global enforcement of business rules

Programming Server Applications

A trigger only has to be defined once, and then it can be used for any
application that changes the table.

* Easier maintenance

If a business policy changes, only the corresponding trigger needs to
change instead of each application program.

When you run a triggered SQL statement, it may cause the event of another,
or even the same, trigger to occur, which in turn, causes the other, (or a
second instance of the same) trigger to be activated. Therefore, activating a
trigger can cascade the activation of one or more other triggers.

The run-time depth level of trigger cascading supported is 16. If a trigger at
level 17 is activated, SQLCODE -724 (SQLSTATE 54038) will be returned and
the triggering statement will be rolled back.

Related concepts:
* ['INSERT, UPDATE, and DELETE Triggers” on page 27|
« [‘Trigger Granularity” on page 283

* [‘Trigger Activation Time” on page 284]

* [‘Trigger Interactions with Referential Constraints” on page 279

* [‘Trigger Creation Guidelines” on page 281|
[“INSTEAD OF Triggers” on page 279|

Related tasks:
* [‘Creating Triggers” on page 282

* [‘“Defining Business Rules Using Triggers” on page 297]

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Related samples:

* “tbtrig.out -- HOW TO USE TRIGGERS (C)”

* “tbtrig.sqc -- How to use a trigger on a table (C)”

* “tbtrig.out -- HOW TO USE TRIGGERS (C++)”

¢ “tbtrig.sqC -- How to use a trigger on a table (C++)”

¢ “trigsql.sqb - How to use a trigger on a table (IBM COBOL)”
* “TbTrigjava -- How to use triggers (JDBC)”

s “TbTrig.out -- HOW TO USE TRIGGERS (JDBC)”

¢ “TbTrig.out -- HOW TO USE TRIGGERS (SQLJ)”

s “TbTrig.sqlj -- How to use triggers (SQLj)”

Chapter 9. Triggers 277

INSERT, UPDATE, and DELETE Triggers

278

Every trigger is associated with an event. Triggers are activated when their
corresponding event occurs in the database. This trigger event occurs when
the specified action, either an UPDATE, INSERT, or DELETE (including those
caused by actions of referential constraints), is performed on the subject table.
For example:
CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE

FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The above statement defines the trigger new_hire, which activates when you
perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly
one subject table and exactly one modify operation. The modify operations
are:

Insert operation
An insert operation can only be caused by an INSERT statement.
Therefore, triggers are not activated when data is loaded using
utilities that do not use INSERT, such as the LOAD command.

Update operation
An update operation can be caused by an UPDATE statement or as a
result of a referential constraint rule of ON DELETE SET NULL.

Delete operation
A delete operation can be caused by a DELETE statement or as a
result of a referential constraint rule of ON DELETE CASCADE.

If the trigger event is an update operation, the event can be associated with
specific columns of the subject table. In this case, the trigger is only activated
if the update operation attempts to update any of the specified columns. This
provides a further refinement of the event that activates the trigger.

For example, the following trigger, REORDER, activates only if you perform an
update operation on the columns ON_HAND or MAX_STOCKED, of the table PARTS.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < .10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES (ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO)) ;
END

Programming Server Applications

Related concepts:

e ['Trigger Granularity” on page 283

e [‘Trigger Activation Time” on page 284|

* [‘Trigger Interactions with Referential Constraints” on page 279

* ['Triggers in Application Development” on page 275|
* ['INSTEAD OF Triggers” on page 279|

Related tasks:
. I”Creating Triggers” on page 282|

Trigger Interactions with Referential Constraints

A trigger event can occur as a result of changes due to referential constraint
enforcement. For example, given two tables DEPT and EMP, if deleting or
updating DEPT causes propagated deletes or updates to EMP by means of
referential integrity constraints, then delete or update triggers defined on EMP
become activated as a result of the referential constraint defined on DEPT. The
triggers on EMP are run either BEFORE or AFTER the deletion (in the case of
ON DELETE CASCADE) or update of rows in EMP (in the case of ON
DELETE SET NULL), depending on their activation time.

Related concepts:
+ [INSERT, UPDATE, and DELETE Triggers” on page 278
* [‘Trigger Granularity” on page 283

* [‘Trigeers in Application Development” on page 275|

INSTEAD OF Triggers

INSTEAD OF triggers describe how to perform insert, update, and delete
operations against views that are too complex to support these operations
natively. INSTEAD OF triggers allow applications to use a view as the sole
interface for all SQL operations (insert, delete, update and select). Usually,
INSTEAD OF triggers contain the inverse of the logic applied in a view body.
For example, consider a view that decrypts columns from its source table. The
INSTEAD OF trigger for this view encrypts data and then inserts it into the
source table, thus performing the symmetrical operation.

Using an INSTEAD OF trigger, the requested modify operation against the

view gets replaced by the trigger logic, which performs the operation on
behalf of the view. From the perspective of the application this happens

Chapter 9. Triggers 279

transparently, as it perceives that all operations are performed against the
view. Only one INSTEAD OF trigger is allowed for each kind of operation on
a given subject view.

The view itself must be an untyped view or an alias that resolves to an
untyped view. Also, it cannot be a view that is defined using WITH CHECK
OPTION (a symmetric view) or a view on which a symmetric view has been
defined directly or indirectly.

The following example presents three INSTEAD OF triggers that provide logic
for INSERTs, UPDATESs, and DELETEs to the defined view (EMPV). The view
EMPV contains a join in its from clause and therefore cannot natively support
any modify operations.

CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME
FROM EMPLOYEE, DEPARTMENT WHERE
EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV
REFERENCING NEW AS NEWEMP DEFAULTS NULL FOR EACH ROW MODE DB2SQL
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, PHONENO, HIREDATE)
VALUES (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR('70001', 'Unknown dept name')),
PHONENO, HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP DEFAULTS NULL
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
VALUES (CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0
ELSE RAISE ERROR('70002', 'Must not change EMPNO') END);
UPDATE EMPLOYEE AS E
SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR ('70001', 'Unknown dept name')),
NEWEMP.PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;
END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP FOR EACH ROW MODE DB2SQL
DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

Related concepts:

280 Programming Server Applications

« [INSERT, UPDATE, and DELETE Triggers” on page 278
* [‘Triggers in Application Development” on page 275|

Related tasks:
* ['Creating Triggers” on page 282

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Trigger Creation Guidelines

When creating a trigger, you must associate it with a table. This table is called
the subject table of the trigger. The term modify operation refers to any change in
the state of the subject table. A modify operation is initiated by:

* an INSERT statement

* an UPDATE statement, or a referential constraint which performs an
UPDATE

* a DELETE statement, or a referential constraint which performs a DELETE

You must associate each trigger with one of these three types of modify
operations. The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger
performs when its trigger event occurs. The triggered action consists of one or
more SQL statements which can execute either before or after the database
manager performs the trigger event. Once a trigger event occurs, the database
manager determines the set of rows in the subject table that the modify
operation affects and executes the trigger.

When creating a trigger, you must declare the following attributes and
behavior:

* The name of the trigger.
¢ The name of the subject table.

* The trigger activation time (BEFORE or AFTER the modify operation
executes).

¢ The trigger event (INSERT, DELETE, or UPDATE).

* The old values transition variable, if any.

* The new values transition variable, if any.

¢ The old values transition table, if any.

* The new values transition table, if any.

¢ The granularity (FOR EACH STATEMENT or FOR EACH ROW).

Chapter 9. Triggers 281

* The triggered action of the trigger (including a triggered action condition
and triggered SQL statement(s)).

e If the trigger event is UPDATE, then the trigger column list for the trigger
event of the trigger, as well as an indication of whether the trigger column
list was explicit or implicit.

Related concepts:
* ['INSERT, UPDATE, and DELETE Triggers” on page 278|
* ["Trigger Granularity” on page 283

* [Trigger Activation Time” on page 284

* ['Triggers in Application Development” on page 275|

Related tasks:
* ['Creating Triggers” on page 282

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Creating Triggers

282

To create a trigger from the Control Center, use the Create Trigger dialogue.
The Create Trigger dialogue can be found by expanding the object tree and
right-clicking the Triggers folder.

To create a trigger using the command line, use the following template of the
CREATE TRIGGER statement:

CREATE TRIGGER <name>

<action> ON <table_name>

<operation>

<triggered_action>

The following SQL statement creates a trigger that increases the number of
employees each time a new person is hired, by adding 1 to the number of
employees (NBEMP) column in the COMPANY_STATS table each time a row
is added to the EMPLOYEE table.
CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE

FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

Related concepts:
* 'INSERT, UPDATE, and DELETE Triggers” on page 278|
e ["Trigger Granularity” on page 283

* ['Trigger Activation Time” on page 284|

Programming Server Applications

* [‘Triggers in Application Development” on page 275|

e ['Trigger Creation Guidelines” on page 281|

Related reference:
¢ “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Related samples:

* “tbtrig.out -- HOW TO USE TRIGGERS (C)”

* “tbtrig.sqc -- How to use a trigger on a table (C)”

* “tbtrig.out -- HOW TO USE TRIGGERS (C++)”

¢ “tbtrig.sqC -- How to use a trigger on a table (C++)”

* “trigsql.sqb - How to use a trigger on a table (IBM COBOL)”
¢ “TbTrigjava -- How to use triggers (JDBC)”

* “TbTrig.out -- HOW TO USE TRIGGERS (JDBC)”

» “TbTrig.out -- HOW TO USE TRIGGERS (SQLJ)”

* “TbTrig.sqlj -- How to use triggers (SQLj)”

Trigger Granularity
When a trigger is activated, it runs according to its granularity as follows:

FOR EACH ROW
It runs as many times as the number of rows in the set of affected
rows. If you need to refer to the specific rows affected by the
triggered action, use FOR EACH ROW granularity. An example of this
is the comparison of the new and old values of an updated row in an
AFTER UPDATE trigger.

FOR EACH STATEMENT
It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE
or DELETE in which the WHERE clause did not qualify any rows), a FOR
EACH ROW trigger does not run. But a FOR EACH STATEMENT trigger still
runs once.

For example, keeping a count of number of employees can be done using FOR
EACH ROW.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of
FOR EACH STATEMENT.

Chapter 9. Triggers 283

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
REFERENCING NEW_TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
UPDATE COMPANY_STATS
SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note: A granularity of FOR EACH STATEMENT is not supported for
BEFORE triggers.

Related concepts:
+ ["INSERT, UPDATE, and DELETE Triggers” on page 278|
* ['Trigger Activation Time” on page 284|

.| “Triggers in Application Development” on page 275|

* ['Trigger Creation Guidelines” on page 281|

Related tasks:
* [‘Creating Triggers” on page 282|

Trigger Activation Time

284

The trigger activation time specifies when the trigger should be activated. That
is, either BEFORE, AFTER, or INSTEAD OF the trigger event executes. For
example, the activation time of the following trigger is AFTER the INSERT
operation on employee.
CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE

FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

If the activation time is BEFORE, the triggered actions are activated for each
row in the set of affected rows before the trigger event executes. Hence, the
subject table will only be modified after the BEFORE trigger has completed
execution for each row. Note that BEFORE triggers must have a granularity of
FOR EACH ROW.

If the activation time is AFTER, the triggered actions are activated for each
row in the set of affected rows or for the statement, depending on the trigger
granularity. This occurs after the trigger event executes, and after the database
manager checks all constraints that the trigger event may affect, including
actions of referential constraints. Note that AFTER triggers can have a
granularity of either FOR EACH ROW or FOR EACH STATEMENT.

If the activation time is INSTEAD OF, the triggered actions for each row in
the set of affected rows are activated instead of executing the trigger event.

Programming Server Applications

INSTEAD OF triggers must have a granularity of FOR EACH ROW, and the
subject table must be a view. No other triggers are able to use a view as the
subject table.

The different activation times of triggers reflect different purposes of triggers.
Basically, BEFORE triggers are an extension to the constraint subsystem of the
database management system. Therefore, you generally use them to:

* Perform validation of input data,

* Automatically generate values for newly inserted rows

* Read from other tables for cross-referencing purposes.

BEFORE triggers are not used for further modifying the database because they
are activated before the trigger event is applied to the database. Consequently,
they are activated before integrity constraints are checked and may be
violated by the trigger event.

Conversely, you can view AFTER triggers as a module of application logic
that runs in the database every time a specific event occurs. As a part of an
application, AFTER triggers always see the database in a consistent state. Note
that they are run after the integrity constraints that may be violated by the
triggering SQL operation have been checked. Consequently, you can use them
mostly to perform operations that an application can also perform. For
example:

* Perform follow on modify operations in the database

* Perform actions outside the database, for example, to support alerts. Note
that actions performed outside the database are not rolled back if the
trigger is rolled back.

In contrast, you can view an INSTEAD OF trigger as a description of the
inverse operation of the view it is defined on. For example, if the select list in
the view contains an expression over a base table, the INSERT statement in
the body of its INSTEAD OF INSERT trigger will contain the reverse
expression.

Because of the different nature of BEFORE, AFTER, and INSTEAD OF
triggers, a different set of SQL operations can be used to define the triggered
actions of BEFORE and AFTER, INSTEAD OF triggers. For example, update
operations are not allowed in BEFORE triggers because there is no guarantee
that integrity constraints will not be violated by the triggered action. Similarly,
different trigger granularities are supported in BEFORE, AFTER, and
INSTEAD OF triggers. For example, the FOR EACH STATEMENT is not
allowed in BEFORE triggers because there is no guarantee that constraints
will not be violated by the triggered action, which would, in turn, result in
the operation’s failure.

Chapter 9. Triggers 285

The triggered SQL statement of all triggers may be a dynamic compound
statement. However, BEFORE triggers face some restrictions; they may not
contain the following SQL statements:

 UPDATE
* DELETE
* INSERT

Related concepts:
* ['INSERT, UPDATE, and DELETE Triggers” on page 278|
* ["Trigger Granularity” on page 283

* [Triggered Action: SQL Statements” on page 29]]

* [Triggers in Application Development” on page 275|

. | ‘Trigger Creation Guidelines” on page 281|

Related tasks:
+ [“Creating Triggers” on page 282|

Transition Variables

286

When you carry out a FOR EACH ROW trigger, it may be necessary to refer
to the value of columns of the row in the set of affected rows, for which the
trigger is currently executing. Note that to refer to columns in tables in the
database (including the subject table), you can use regular SELECT statements.
A FOR EACH ROW trigger may refer to the columns of the row for which it
is currently executing by using two transition variables that you can specify in
the REFERENCING clause of a CREATE TRIGGER statement. There are two
kinds of transition variables, which are specified as OLD and NEW, together
with a correlation-name. They have the following semantics:

OLD AS correlation-name
Specifies a correlation name which captures the original state of the
row, that is, before the triggered action is applied to the database.

NEW AS correlation-name
Specifies a correlation name which captures the value that is, or was,
used to update the row in the database when the triggered action is
applied to the database.

Consider the following example:

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX STOCKED
AND N_ROW.ORDER PENDING = 'N')

Programming Server Applications

BEGIN ATOMIC
VALUES (ISSUE_SHIP_REQUEST (N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW. PARTNO)) ;
UPDATE PARTS SET PARTS.ORDER PENDING = 'Y'
WHERE PARTS.PARTNO = N_ROW.PARTNO;
END

Based on the definition of the OLD and NEW transition variables given
above, it is clear that not every transition variable can be defined for every
trigger. Transition variables can be defined depending on the kind of trigger
event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition
variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable
because before the activation of the INSERT operation, the affected
row does not exist in the database. That is, there is no original state of
the row that would define old values before the triggered action is
applied to the database.

DELETE
A DELETE trigger can only refer to an OLD transition variable
because there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers.
In a FOR EACH STATEMENT trigger, a reference to a transition
variable is not sufficient to specify to which of the several rows in the
set of affected rows the transition variable is referring.

Related concepts:
* [INSERT, UPDATE, and DELETE Triggers” on page 278
s [‘Trigger Granularity” on page 283

¢ ['Transition Tables” on page 28§

Related tasks:
* [‘Creating Triggers” on page 282|

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Chapter 9. Triggers 287

Transition Tables

288

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it may be
necessary to refer to the whole set of affected rows. This is necessary, for
example, if the trigger body needs to apply aggregations over the set of
affected rows (for example, MAX, MIN, or AVG of some column values). A
trigger may refer to the set of affected rows by using two transition tables that
can be specified in the REFERENCING clause of a CREATE TRIGGER
statement. Just like the transition variables, there are two kinds of transition
tables, which are specified as OLD_TABLE and NEW_TABLE together with a
table-name, with the following semantics:

OLD_TABLE AS table-name
Specifies the name of the table which captures the original state of the
set of affected rows (that is, before the triggering SQL operation is
applied to the database).

NEW_TABLE AS table-name
Specifies the name of the table which captures the value that is used
to update the rows in the database when the triggered action is
applied to the database.

For example:

CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW_TABLE AS N_TABLE

NEW AS N_ROW

FOR EACH ROW MODE DB2SQL

WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)

BEGIN ATOMIC

VALUES (INFORM_SUPERVISOR(N_ROMW.PARTNO,

N_ROW.MAX_STOCKED,
N_ROW.ON_HAND));

END

Note that NEW_TABLE always has the full set of updated rows, even on a
FOR EACH ROW trigger. When a trigger acts on the table on which the
trigger is defined, NEW_TABLE contains the changed rows from the
statement that activated the trigger. However, NEW_TABLE does not contain
the changed rows that were caused by statements within the trigger, as that
would cause a separate activation of the trigger.

The transition tables are read-only. The same rules that define the kinds of
transition variables that can be defined for which trigger event, apply for
transition tables:

UPDATE
An UPDATE trigger can refer to both OLD_TABLE and NEW_TABLE
transition tables.

Programming Server Applications

INSERT
An INSERT trigger can only refer to a NEW_TABLE transition table
because before the activation of the INSERT operation the affected
rows do not exist in the database. That is, there is no original state of
the rows that defines old values before the triggered action is applied
to the database.

DELETE
A DELETE trigger can only refer to an OLD transition table because
there are no new values specified in the delete operation.

Note: It is important to observe that transition tables can be specified for both
granularities of AFTER triggers: FOR EACH ROW and FOR EACH
STATEMENT.

The scope of the OLD_TABLE and NEW_TABLE table-name is the trigger body. In
this scope, this name takes precedence over the name of any other table with
the same unqualified table-name that may exist in the schema. Therefore, if the
OLD_TABLE or NEW_TABLE table-name is for example, X, a reference to X (that is,
an unqualified X) in the FROM clause of a SELECT statement will always
refer to the transition table even if there is a table named X in the in the
schema of the trigger creator. In this case, the user has to make use of the
fully qualified name in order to refer to the table X in the schema.

Related concepts:
* [INSERT, UPDATE, and DELETE Triggers” on page 278
* [‘Trigger Granularity” on page 283

* [“Transition Variables” on page 286

Related tasks:
* [‘Creating Triggers” on page 282

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Triggered Action
Triggered Action

The activation of a trigger results in the running of its associated triggered
action. Every trigger has exactly one triggered action which, in turn, has two
components:

* An optional triggered action condition or WHEN clause

* A set of triggered SQL statement(s).

Chapter 9. Triggers 289

290

The triggered action condition defines whether or not the set of triggered
statements are performed for the row or for the statement for which the
triggered action is executing. The set of triggered statements define the set of
actions performed by the trigger in the database as a consequence of its event
having occurred.

For example, the following trigger action specifies that the set of triggered
SQL statements should only be activated for rows in which the value of the
on_hand column is less than ten per cent of the value of the max_stocked
column. In this case, the set of triggered SQL statements is the invocation of
the issue_ship_request function.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL

WHEN (N_ROW.ON_HAND < .10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES (ISSUE_SHIP_REQUEST (N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO)) ;
END

Related concepts:

s [‘Triggered Action: Conditions” on page 290
* ["Triggered Action: SQL Statements” on page 291|
* ['Triggered Action: Functions” on page 292

Triggered Action: Conditions

The triggered action condition is an optional clause of the triggered action which
specifies a search condition that must evaluate to true to run SQL statements
within the triggered action. If the WHEN clause is omitted, then the SQL
statements within the triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is
a FOR EACH ROW trigger, and once for the statement if the trigger is a FOR
EACH STATEMENT trigger.

This clause provides further control that you can use to fine tune the actions
activated on behalf of a trigger. An example of the usefulness of the WHEN
clause is to enforce a data dependent rule in which a triggered action is
activated only if the incoming value falls inside or outside of a certain range.

Related concepts:

* ['Triggered Action” on page 289

* ["Triggered Action: SQL Statements” on page 29]]

Programming Server Applications

e [‘Triggered Action: Functions” on page 292

Triggered Action: SQL Statements

The set of triggered SQL statements carries out the real actions caused by
activating a trigger. Not every SQL operation is meaningful in every trigger.
Depending on whether the trigger activation time is BEFORE or AFTER,
different kinds of operations may be appropriate as a triggered SQL
statement.

In most cases, if any triggered SQL statement returns a negative return code,
the triggering SQL statement together with all trigger and referential
constraint actions are rolled back, and an error is returned: SQLCODE -723
(SQLSTATE 09000). The trigger name, SQLCODE, SQLSTATE and many of the
tokens from the failing triggered SQL statement are returned. Error conditions
occurring when triggers are running that are critical or roll back the entire
unit of work are not returned using SQLCODE -723 (SQLSTATE 09000).

The triggered SQL statement of all triggers may be a dynamic compound
statement. That is, they may contain one or more of the following:

* DECLARE variable statement
* SET variable statement

e WHILE loop

* FOR loop

e IF statement

* SIGNAL statement

* ITERATE statement

* LEAVE statement

* GET DIGNOSTIC statement

» fullselect

However, only AFTER and INSTEAD of triggers may contain one or more of
the following:

* UPDATE SQL statement
 DELETE SQL statement
* INSERT SQL statement

Related concepts:

* ['Triggered Action” on page 289

* ['Triggered Action: Conditions” on page 290

* [‘Triggered Action: Functions” on page 292

Chapter 9. Triggers 291

292

Triggered Action: Functions

Functions, including user-defined functions (UDFs), may be invoked within a
triggered SQL statement. Consider the following example:,
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW AS N_ROW

FOR EACH ROW MODE DB2SQL

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

BEGIN ATOMIC

VALUES (ISSUE_SHIP_REQUEST
(N_ROW.MAX_STOCKED - N_ROW.ON_HAND, N_ROW.PARTNO));
END

When a triggered SQL statement contains a function invocation with an
unqualified function name, the function invocation is resolved based on the
following:

* the SQL path at the time of creation of the trigger.

* the EXECUTE privilege of the definer of the trigger on the functions in the
SQL path.

When invoking functions with side effects, such as sending an email, ensure
that the functions are correctly defined as having EXTERNAL ACTION.
Otherwise, DB2® may decide not to execute the UDF if it does not change the
SQL semantics of the trigger.

UDFs are written in SQL, Java, C, or C++. This enables complex control of
logic flows, error handling and recovery, and access to system and library
functions. This capability allows a triggered action to perform non-SQL types
of operations when a trigger is activated. For example, such a UDF could
send an electronic mail message and thereby act as an alert mechanism.
External actions, such as messages, are not under commit control and will be
run regardless of success or failure of the rest of the triggered actions.

Also, the function can return an SQLSTATE that indicates an error has
occurred which results in the failure of the triggering SQL statement. This is
one method of implementing user-defined constraints. (Using a SIGNAL
SQLSTATE statement is the other.) In order to use a trigger as a means to
check complex user-defined constraints, you can use the RAISE_ERROR built-in
function in a triggered SQL statement. This function can be used to return a
user-defined SQLSTATE (SQLCODE -438) to applications.

For example, consider some rules related to the HIREDATE column of the
EMPLOYEE table, where HIREDATE is the date that the employee starts
working.

« HIREDATE must be date of insert or a future date

* HIREDATE cannot be more than 1 year from date of insert.

Programming Server Applications

 If HIREDATE is between 6 and 12 months from date of insert, notify
personnel manager using a UDF called send_note.

The following trigger handles all of these rules on INSERT:

CREATE TRIGGER CHECK_HIREDATE
NO CASCADE BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
VALUES CASE
WHEN NEW_EMP.HIREDATE - CURRENT DATE > 600.
AND NEW_EMP.HIREDATE - CURRENT DATE <eq; 10000.
THEN SEND_NOTE('persmgr', NEW_EMP.EMPNO, 'late.txt')
WHEN NEW_EMP.HIREDATE < CURRENT DATE
THEN RAISE_ERROR('85001', "HIREDATE has passed')
WHEN NEW_EMP.HIREDATE - CURRENT DATE > 10000.
THEN RAISE_ERROR('BSOGZ', '"HIREDATE too far out')
END;
END

Related concepts:

* ['Triggered Action” on page 289

* [“Triggered Action: Conditions” on page 290

* [“Triggered Action: SQL Statements” on page 291|

Multiple Triggers

When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The value
of this timestamp is subsequently used to order the activation of triggers
when there is more than one trigger that should be run at the same time. For
example, the timestamp is used when there is more than one trigger on the
same subject table with the same event and the same activation time. The
timestamp is also used when there are one or more AFTER or INSTEAD OF
triggers that are activated by the trigger event and referential constraint
actions caused directly or indirectly (that is, recursively by other referential
constraints) by the triggered action.

Consider the following two triggers:

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;
END

CREATE TRIGGER NEW_HIRED_DEPT

Chapter 9. Triggers 293

AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
UPDATE DEPTS
SET NBEMP = NBEMP + 1
WHERE DEPT_ID = EMP.DEPT_ID;
END

The above triggers are activated when you run an INSERT operation on the
employee table. In this case, the timestamp of their creation defines which of
the above two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs after
all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers can
be used as incremental additions to the changes that affect the database. For
example, if a triggered SQL statement of trigger T1 inserts a new row into a
table T, a triggered SQL statement of trigger T2 that is run after T1 can be
used to update the same row in T with specific values. By activating triggers
in ascending order of creation, you can ensure that the actions of new triggers
run on a database that reflects the result of the activation of all old triggers.

Related concepts:

* [‘Triggers in Application Development” on page 275|

Related tasks:
* ["Extracting Information from UDTs, UDFs, and LOBs with Triggers” on|

page 29é|

+ ["Preventing Operations on Tables Using Triggers” on page 296

* ['Defining Business Rules Using Triggers” on page 297

* ['Defining Actions Using Triggers” on page 297|

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Synergy Between Triggers, Constraints, and Routines

Extracting Information from UDTs, UDFs, and LOBs with Triggers

You could write an application that stores complete electronic mail messages
as a LOB value within the column MESSAGE of the ELECTRONIC_MAIL

294 Programming Server Applications

table. To manipulate the electronic mail, you could use UDFs to extract
information from the message column every time such information was
required within an SQL statement.

Notice that the queries do not extract information once and store it explicitly
as columns of tables. If this was done, it would increase the performance of
the queries, not only because the UDFs are not invoked repeatedly, but also
because you can then define indexes on the extracted information.

Using triggers, you can extract this information whenever new electronic mail
is stored in the database. To achieve this, define a BEFORE trigger to extract
the corresponding information as follows:

CREATE TRIGGER EXTRACT INFO
NO CASCADE BEFORE INSERT ON ELECTRONIC MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
SET (N.SENDER, N.RECEIVER, N.SENT ON, N.SUBJECT)
= (SELECT SENDER, RECEIVER, SENT ON, SUBJECT FROM
TABLE (EMAIL_HEADER(N.MESSAGE)) AS H)
END

This can also be done by adding generated columns to the
ELECTRONIC_MAIL table.

ALTER TABLE ELECTRONIC MAIL

ADD COLUMN SENDER VARCHAR(200) GENERATED ALWAYS
AS (SENDER(N.MESSAGE))

ADD COLUMN RECEIVER VARCHAR(200) GENERATED ALWAYS
AS (RECEIVER(N.MESSAGE))

ADD COLUMN SENT_ON DATE GENERATED ALWAYS
AS (SENDING_DATE (N.MESSAGE))

ADD COLUMN SUBJECT VARCHAR(200) GENERATED ALWAYS
AS (SUBJECT (N.MESSAGE))

Now, whenever new electronic mail is inserted into the MESSAGE column, its
sender, its receiver, the date on which it was sent, and its subject are extracted

from the message and stored in separate columns.

Related concepts:

e [‘Trigeered Action” on page 289

¢ [‘Triggered Action: Conditions” on page 290

e ['Triggered Action: SQL Statements” on page 291|

* [‘Triggered Action: Functions” on page 292

* ["Multiple Triggers” on page 293

Related tasks:
* [‘Preventing Operations on Tables Using Triggers” on page 296

Chapter 9. Triggers 295

296

* ['Defining Business Rules Using Triggers” on page 297

* ['Defining Actions Using Triggers” on page 297|

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Preventing Operations on Tables Using Triggers

Suppose you want to prevent mail you sent, which was undelivered and
returned to you (perhaps because the e-mail address was incorrect), from
being stored in the e-mail’s table.

To do so, you need to prevent the execution of certain SQL INSERT
statements. There are two ways to do this:

* Define a BEFORE trigger that raises an error whenever the subject of an
e-mail is undelivered mail:

CREATE TRIGGER BLOCK INSERT
NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (SUBJECT(N.MESSAGE) = 'undelivered mail')
BEGIN ATOMIC
SIGNAL SQLSTATE '85101'
SET MESSAGE_TEXT = ('Attempt to insert undelivered mail');
END

* Define a check constraint forcing values of the new column subject to be
different from undelivered mail:

ALTER TABLE ELECTRONIC_MAIL
ADD CONSTRAINT NO_UNDELIVERED
CHECK (SUBJECT <> 'undelivered mail')

Because of the advantages of the declarative nature of constraints, the
constraint should generally be defined instead of the trigger.

Related concepts:

* ["'Multiple Triggers” on page 293|

* ['Triggers in Application Development” on page 275|

Related tasks:
* ["Extracting Information from UDTs, UDFs, and LOBs with Triggers” on|

page 29@]

* ["Defining Business Rules Using Triggers” on page 297

* ['Defining Actions Using Triggers” on page 297|

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Programming Server Applications

Defining Business Rules Using Triggers

Suppose your company has the policy that all e-mail dealing with customer
complaints must have Mr. Nelson, the marketing manager, in the carbon copy
(CQC) list. Because this is a rule, you might want to express it as a constraint
such as one of the following (assuming the existence of a CC_LIST UDF to
check it):

ALTER TABLE ELECTRONIC_MAIL ADD

CHECK (SUBJECT <> 'Customer complaint' OR
CONTAINS (CC_LIST(MESSAGE), 'nelson@vnet.ibm.com') = 1)

However, such a constraint prevents the insertion of e-mail dealing with
customer complaints that do not have the marketing manager in the cc list.
This is certainly not the intent of your company’s business rule. The intent is
to forward to the marketing manager any e-mail dealing with customer
complaints that were not copied to the marketing manager. Such a business
rule can only be expressed with a trigger because it requires taking actions
that cannot be expressed with declarative constraints. The trigger assumes the
existence of a SEND_NOTE function with parameters of type E_MAIL and
character string.
CREATE TRIGGER INFORM_MANAGER

AFTER INSERT ON ELECTRONIC_MAIL

REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL

WHEN (N.SUBJECT = 'Customer complaint' AND

CONTAINS (CC_LIST(MESSAGE), 'nelson@vnet.ibm.com') = 0)
BEGIN ATOMIC

VALUES (SEND_NOTE (N.MESSAGE, 'nelson@vnet.ibm.com'));
END

Related concepts:

* ["Multiple Triggers” on page 293

* ["Triggers in Application Development” on page 275|

Related tasks:
* ["Extracting Information from UDTs, UDFs, and LOBs with Triggers” on|

page 29@]

s [Preventing Operations on Tables Using Triggers” on page 29¢|

* [‘Defining Actions Using Triggers” on page 297|

Defining Actions Using Triggers

Assume that your general manager wants to keep the names of customers
who have sent three or more complaints in the last 72 hours in a separate
table. The general manager also wants to be informed whenever a customer
name is inserted in this table more than once.

To define such actions, you define:

Chapter 9. Triggers 297

* An UNHAPPY_CUSTOMERS table:

CREATE TABLE UNHAPPY CUSTOMERS (
NAME VARCHAR (30),
EMAIL_ADDRESS VARCHAR (200),
INSERTION_DATE DATE)

* A trigger to automatically insert a row in UNHAPPY_CUSTOMERS if 3 or
more messages were received in the last 3 days (assumes the existence of a
CUSTOMERS table that includes a NAME column and an
E_MAIL_ADDRESS column):

CREATE TRIGGER STORE_UNHAPPY_CUST
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (3 <= (SELECT COUNT (*)
FROM ELECTRONIC_MAIL
WHERE SENDER = N.SENDER
AND SENDING_DATE(MESSAGE) > CURRENT DATE - 3 DAYS)

)
BEGIN ATOMIC
INSERT INTO UNHAPPY_CUSTOMERS
VALUES ((SELECT NAME
FROM CUSTOMERS
WHERE E_MAIL_ADDRESS = N.SENDER), N.SENDER, CURRENT DATE);
END

* A trigger to send a note to the general manager if the same customer is
inserted in UNHAPPY_CUSTOMERS more than once (assumes the
existence of a SEND_NOTE function that takes 2 character strings as input):

CREATE TRIGGER INFORM_GEN_MGR

AFTER INSERT ON UNHAPPY_CUSTOMERS

REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL

WHEN (1 <(SELECT COUNT (%)
FROM UNHAPPY_CUSTOMERS
WHERE EMAIL_ADDRESS = N.EMAIL_ADDRESS)

)
BEGIN ATOMIC
VALUES (SEND_NOTE('Check customer:' CONCAT N.NAME,
'bigboss@vnet.ibm.com'));
END

Related concepts:

* ['Multiple Triggers” on page 293|

* ['Triggers in Application Development” on page 275|

Related tasks:

* ["Extracting Information from UDTs, UDFs, and LOBs with Triggers” on|
age 294

* ["Preventing Operations on Tables Using Triggers” on page 296|

298 Programming Server Applications

* [‘Defining Business Rules Using Triggers” on page 297]

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Chapter 9. Triggers 299

300 Programming Server Applications

Part 3. Appendixes

© Copyright IBM Corp. 1993 - 2002 301

302 Programming Server Applications

Appendix A. DB2GENERAL Routines

DB2GENERAL Routines303 DB2GENERAL Java Class:
DB2GENERAL UDFs304 COM.IBM.db2.app.UDF.31l
Supported SQL Data Types in DB2GENERAL Java Class:
DB2GENERAL Routines307 COM.IBM.db2.app.Lob314
Java Classes for DB2GENERAL Routines . . 309 DB2GENERAL Java Class:
Java Classes for DB2GENERAL Routines 309 COM.IBM.db2.app.Blob.315
DB2GENERAL Java Class: DB2GENERAL Java Class:
COM.IBM.db2.app.StoredProc 310 COM.IBM.db2.app.Clob.315

DB2GENERAL Routines

PARAMETER STYLE DB2GENERAL routines are written in Java. Creating
DB2GENERAL routines is very similar to creating routines in other supported
programming languages. Once you have created and registered them, you can
call them from programs in any language. Typically, you may call JDBC APIs
from your stored procedures, but you cannot call them from UDFs.

When developing routines in Java, it is strongly recommended that you
register them using the PARAMETER STYLE JAVA clause in the CREATE
statement. PARAMETER STYLE DB2GENERAL is still available to enable the
implementation of the following features in Java " routines:

* table functions

* scratchpads

* access to the DBINFO structure

s the ability to make a FINAL CALL (and a separate first call) to the function
or method

If you have PARAMETER STYLE DB2GENERAL routines that do not use any
of the above features, it is recommended that you migrate them to
PARAMETER STYLE JAVA for portability.

Related concepts:
» ["'DB2GENERAL UDFs” on page 304
* [‘Java Routines” on page 118]

* [‘Table Function Execution Model for Java” on page 57

Related reference:

* [‘Java Debug Table DB2DBG.ROUTINE_DEBUG” on page 128|

* ['JAR File Administration on the Database Server” on page 122|

* [“Supported SQL Data Types in DB2GENERAL Routines” on page 307|

© Copyright IBM Corp. 1993 - 2002 303

* ['Java Classes for DB2GENERAL Routines” on page 309
['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDE” on page 311|
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314]

+ "'DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|

* ["'DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

DB2GENERAL UDFs

304

You can create and use UDFs in Java'" just as you would in other languages,
with only a few minor differences when compared to C UDFs. After you code
the UDF, you register it with the database. You can then refer to it in your
applications.

In general, if you declare a UDF taking arguments of SQL types t1, {2, and 3,
returning type t4, it will be called as a Java method with the expected Java
signature:

public void name (71 a, T2 b, T3 ¢c, T4 d) { }

Where:

* name is the Java method name

* T1 through T4 are the Java types that correspond to SQL types t1 through
t4.

* 4, b, and c are variable names for the input arguments.

* d is an variable name that represents the output argument.

For example, given a UDF called sampTle!test3 that returns INTEGER and
takes arguments of type CHAR(5), BLOB(10K), and DATE, DB2® expects the
Java implementation of the UDF to have the following signature:

import COM.ibm.db2.app.x*;

public class sample extends UDF {

public void test3(String argl, Blob arg2, String arg3,
int result) { ... }
}

Java routines that implement table functions require more arguments. Beside
the variables representing the input, an additional variable appears for each
column in the resulting row. For example, a table function may be declared as:

public void test4(String argl, int resultl,
Blob result2, String result3);

SQL NULL values are represented by Java variables that are not initialized.
These variables have a value of zero if they are primitive types, and Java null

Programming Server Applications

if they are object types, in accordance with Java rules. To tell an SQL NULL
apart from an ordinary zero, you can call the function isNull for any input
argument:

{....
if (isNul1(1)) { /* argument #1 was a SQL NULL =/ }
else { /* not NULL %/ }

}

In the above example, the argument numbers start at one. The isNul1()
function, like the other functions that follow, are inherited from the
COM. ibm.db2.app.UDF class.

To return a result from a scalar or table UDF, use the set() method in the
UDF, as follows:

{
}

.;é{:(Z, value);

Where "2’ is the index of an output argument, and value is a literal or variable
of a compatible type. The argument number is the index in the argument list
of the selected output. In the first example in this section, the int result
variable has an index of 4; in the second, resultl through result3 have
indices of 2 through 4.

Like C modules used in UDFs and stored procedures, you cannot use the Java
standard I/O streams (System.in, System.out, and System.err) in Java
routines.

Remember that all the Java class files (or the JARs that contain the classes)
that you use to implement a routine must reside in the sq11ib/function
directory, or in a directory specified in the database manager’s CLASSPATH.

Typically, DB2 calls a UDF many times, once for each row of an input or
result set in a query. If SCRATCHPAD is specified in the CREATE
FUNCTION statement of the UDF, DB2 recognizes that some "continuity” is
needed between successive invocations of the UDF, and therefore the
implementing Java class is not instantiated for each call, but generally
speaking once per UDF reference per statement. Generally it is instantiated
before the first call and used thereafter, but may for table functions be
instantiated more often. If, however, NO SCRATCHPAD is specified for a
UDF, either a scalar or table function, then a clean instance is instantiated for
each call to the UDE

A scratchpad may be useful for saving information across calls to a UDF.

While Java and OLE UDFs can either use instance variables or set the
scratchpad to achieve continuity between calls, C and C++ UDFs must use the

Appendix A. DB2GENERAL Routines 305

306

scratchpad. Java UDFs access the scratchpad with the getScratchPad() and
setScratchPad() methods available in COM.ibm.db2.app.UDF.

For Java table functions that use a scratchpad, control when you get a new
scratchpad instance by using the FINAL CALL or NO FINAL CALL option on
the CREATE FUNCTION statement.

The ability to achieve continuity between calls to a UDF by means of a
scratchpad is controlled by the SCRATCHPAD and NO SCRATCHPAD option
of CREATE FUNCTION, regardless of whether the DB2 scratchpad or instance
variables are used.

For scalar functions, you use the same instance for the entire statement.

Note that every reference to a Java UDF in a query is treated independently,
even if the same UDF is referenced multiple times. This is the same as what
happens for OLE, C and C++ UDFs as well. At the end of a query, if you
specify the FINAL CALL option for a scalar function then the object’s close()
method is called. For table functions the close() method will always be
invoked as indicated in the subsection which follows this one. If you do not
define a close() method for your UDF class, then a stub function takes over
and the event is ignored.

If you specify the ALLOW PARALLEL clause for a Java UDF in the CREATE
FUNCTION statement, DB2 may elect to evaluate the UDF in parallel. If this
occurs, several distinct Java objects may be created on different partitions.
Each object receives a subset of the rows.

As with other UDFs, Java UDFs can be FENCED or NOT FENCED. NOT
FENCED UDFs run inside the address space of the database engine; FENCED
UDFs run in a separate process. Although Java UDFs cannot inadvertently
corrupt the address space of their embedding process, they can terminate or

slow down the process. Therefore, when you debug UDFs written in Java, you
should run them as FENCED UDFs.

Related concepts:
 I"'DB2GENERAL Routines” on page 303|
* ['Java Routines” on page 118|

* ['Table Function Execution Model for Java” on page 57

Related reference:

* ['Java Debug Table DB2DBG.ROUTINE_DEBUG” on page 128|

* ['Supported SQL Data Types in DB2GENERAL Routines” on page 307
+ ["Java Classes for DB2GENERAL Routines” on page 309

Programming Server Applications

['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDF” on page 311]
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314]
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|
['DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

Related samples:

* “UDFsqlsvjava -- Provide UDFs to be called by UDFsqlcljava (JDBC)”
¢ “UDFsrv.java -- Provide UDFs to be called by UDEFcli.java (JDBC)”

¢ “UDFsrvjava -- Provide UDFs to be called by UDEFcli.sqlj (SQLj)”

Supported SQL Data Types in DB2GENERAL Routines

When you call PARAMETER STYLE DB2GENERAL routines, DB2 converts

SQL types to and from Java types for you. Several of these classes are
provided in the Java package COM.ibm.db2.app.

Table 16. DB2 SQL Types and Java Objects

SQL Column Type Java Data Type
SMALLINT short

INTEGER int

BIGINT long

REALD float

DOUBLE double

DECIMAL(p,s) java.math.BigDecimal
NUMERIC(p,s) java.math.BigDecimal
CHAR(n) java.lang.String
CHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob
VARCHAR(n) java.lang.String
VARCHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob
LONG VARCHAR java.lang.String

LONG VARCHAR FOR BIT DATA COM.ibm.db2.app.Blob
GRAPHIC(n) java.lang.String
VARGRAPHIC(n) String

LONG VARGRAPHICZ String

BLOB(12 COM.ibm.db2.app.Blob
CLOB(nf2 COM.ibm.db2.app.Clob

Appendix A. DB2GENERAL Routines

307

308

Table 16. DB2 SQL Types and Java Objects (continued)

SQL Column Type Java Data Type
DBCLOB(n)B COM.ibm.db2.app.Clob
DATH String

TIME String

TIMESTAMPE String

Notes:

1. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or
8).

2. The Blob and Clob classes are provided in the COM.ibm.db2.app package. Their
interfaces include routines to generate an InputStream and OutputStream for
reading from and writing to a Blob, and a Reader and Writer for a Clob.

3. SQL DATE, TIME, and TIMESTAMP values use the ISO string encoding in Java, as
they do for UDFs coded in C.

Instances of classes COM.ibm.db2.app.Blob and COM.ibm.db2.app.Clob
represent the LOB data types (BLOB, CLOB, and DBCLOB). These classes
provide a limited interface to read LOBs passed as inputs, and write LOBs
returned as outputs. Reading and writing of LOBs occur through standard
Java I/O stream objects. For the Blob class, the routines getInputStream() and
getOutputStream() return an InputStream or OutputStream object through
which the BLOB content may be processed bytes-at-a-time. For a Clob, the
routines getReader() and getWriter() will return a Reader or Writer object
through which the CLOB or DBCLOB content may be processed
characters-at-a-time.

If such an object is returned as an output using the set () method, code page
conversions may be applied in order to represent the Java Unicode characters
in the database code page.

Related concepts:

+ I'DB2GENERAL Routines” on page 303|
+ I"'DB2GENERAL UDFs” on page 304]

* ['Java Routines” on page 118§|

* ['Table Function Execution Model for Java” on page 57

Related reference:

* ["Supported SQL Data Types in Java” on page 123|
* ['Java Classes for DB2GENERAL Routines” on page 309
* ['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|

Programming Server Applications

['DB2GENERAL Java Class: COM.IBM.db2.app.UDE” on page 311|
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314|
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|
['DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

Java Classes for DB2GENERAL Routines
Java Classes for DB2GENERAL Routines

This interface provides the following routine to fetch a JDBC connection to the
embedding application context:

public java.sql.Connection getConnection()

You can use this handle to run SQL statements. Other methods of the
StoredProc interface are listed in the file
sqllib/samples/java/StoredProc.java.

There are five classes/interfaces that you can use with Java Stored Procedures
or UDFs:

¢ COM.ibm.db2.app.StoredProc
¢ COM.ibm.db2.app.UDF

* COM.ibm.db2.app.Lob

¢ COM.ibm.db2.app.Blob

* COM.ibm.db2.app.Clob

Related concepts:

+ ["'DB2GENERAL Routines” on page 303
+ ['DB2GENERAL UDFs” on page 304|

« [‘Java Routines” on page 118]

Related reference:

* ["'Supported SQL Data Types in DB2GENERAL Routines” on page 307

+ ["'DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDE” on page 311|
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314|
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|
['DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

Appendix A. DB2GENERAL Routines 309

310

DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc

A Java class that contains methods intended to be called as PARAMETER
STYLE DB2GENERAL stored procedures must be public and must implement
this Java interface. You must declare such a class as follows:

public class user-STP-class extends COM.ibm.db2.app.StoredProc{ ... }

You can only call inherited methods of the COM.ibm.db2.app.StoredProc
interface in the context of the currently executing stored procedure. For
example, you cannot use operations on LOB arguments, result- or
status-setting calls, etc., after a stored procedure returns. A Java exception will
be thrown if you violate this rule.

Argument-related calls use a column index to identify the column being
referenced. These start at 1 for the first argument. All arguments of a
PARAMETER STYLE DB2GENERAL stored procedure are considered INOUT
and thus are both inputs and outputs.

Any exception returned from the stored procedure is caught by the database
and returned to the caller with SQLCODE -4302, SQLSTATE 38501. A JDBC
SQLException or SQLWarning is handled specially and passes its own
SQLCODE, SQLSTATE etc. to the calling application verbatim.

The following methods are associated with the COM.ibm.db2.app.StoredProc
class:

public StoredProc() [default constructor]

This constructor is called by the database before the stored procedure call.
public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL
NULL.

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception
public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception
public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given
value. The index has to refer to a valid output argument, the data type must
match, and the value must have an acceptable length and contents. Strings
with Unicode characters must be representable in the database code page.
Errors result in an exception being thrown.

Programming Server Applications

public java.sql.Connection getConnection() throws Exception

This function returns a JDBC object that represents the calling application’s
connection to the database. It is analogous to the result of a null SQLConnect ()
call in a C stored procedure.

Related concepts:

* ['DB2GENERAL Routines” on page 303
* ['DB2GENERAL UDFs” on page 304]

* [‘Java Routines” on page 118]

Related reference:

* ["Supported SQL Data Types in DB2GENERAL Routines” on page 307]
* [‘Java Classes for DB2GENERAL Routines” on page 309
* ['DB2GENERAL Java Class: COM.IBM.db2.app.UDF” on pa&?ﬂlj
* ['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314]
+ ['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|
["'DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

DB2GENERAL Java Class: COM.IBM.db2.app.UDF

A Java class that contains methods intended to be called as PARAMETER
STYLE DB2GENERAL UDFs must be public and must implement this Java
interface. You must declare such a class as follows:

public class user-UDF-class extends COM.ibm.db2.app.UDF{ ... }

You can only call methods of the COM.ibm.db2.app.UDF interface in the context
of the currently executing UDFE. For example, you cannot use operations on
LOB arguments, result- or status-setting calls, etc., after a UDF returns. A Java
exception will be thrown if this rule is violated.

Argument-related calls use a column index to identify the column being set.
These start at 1 for the first argument. Output arguments are numbered
higher than the input arguments. For example, a scalar UDF with three inputs
uses index 4 for the output.

Any exception returned from the UDF is caught by the database and returned
to the caller with SQLCODE -4302, SQLSTATE 38501.

The following methods are associated with the COM.ibm.db2.app.UDF class:
public UDF() [default constructor]

This constructor is called by the database at the beginning of a series of UDF
calls. It precedes the first call to the UDFE.

Appendix A. DB2GENERAL Routines 311

312

public void close()

This function is called by the database at the end of a UDF evaluation, if the
UDF was created with the FINAL CALL option. It is analogous to the final
call for a C UDF. For table functions, close() is called after the CLOSE call to
the UDF method (if NO FINAL CALL is coded or defaulted), or after the
FINAL call (if FINAL CALL is coded). If a Java UDF class does not implement
this function, a no-op stub will handle and ignore this event.

public int getCallType() throws Exception

Table function UDF methods use getCallType() to find out the call type for a
particular call. It returns a value as follows (symbolic defines are provided for
these values in the COM.ibm.db2.app.UDF class definition):

-2 FIRST call
e -1 OPEN call
e 0 FETCH call
* 1 CLOSE call
e 2 FINAL call
public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL
NULL.

public boolean needToSet(int) throws Exception

This function tests whether an output argument with the given index needs to
be set. This may be false for a table UDF declared with DBINFO, if that
column is not used by the UDF caller.

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception

public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception

public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given
value. The index has to refer to a valid output argument, the data type must
match, and the value must have an acceptable length and contents. Strings
with Unicode characters must be representable in the database code page.
Errors result in an exception being thrown.

public void setSQLstate(String) throws Exception

Programming Server Applications

This function may be called from a UDF to set the SQLSTATE to be returned
from this call. A table UDF should call this function with "02000" to signal the
end-of-table condition. If the string is not acceptable as an SQLSTATE, an
exception will be thrown.

public void setSQLmessage(String) throws Exception

This function is similar to the setSQLstate function. It sets the SQL message
result. If the string is not acceptable (for example, longer than 70 characters),
an exception will be thrown.

public String getFunctionName() throws Exception

This function returns the name of the executing UDFE.
public String getSpecificName() throws Exception

This function returns the specific name of the executing UDF.
public byte[] getDBinfo() throws Exception

This function returns a raw, unprocessed DBINFO structure for the executing
UDE as a byte array. You must first declare it with the DBINFO option.
public String getDBname() throws Exception

public String getDBauthid() throws Exception

public String getDBtbschema() throws Exception

public String getDBtbname() throws Exception

public String getDBcolname() throws Exception

public String getDBver_rel() throws Exception

public String getDBplatform() throws Exception

public String getDBapplid() throws Exception

These functions return the value of the appropriate field from the DBINFO
structure of the executing UDFE.

public int getDBprocid() throws Exception

This function returns the routine id of the procedure which directly or
indirectly invoked this routine. The routine id matches the ROUTINEID
column in SYSCAT.ROUTINES which can be used to retrieve the name of the
invoking procedure. If the executing routine is invoked from an application,
getDBprocid() returns 0.

public int[] getDBcodepg() throws Exception

This function returns the SBCS, DBCS, and composite code page numbers for
the database, from the DBINFO structure. The returned integer array has the
respective numbers as its first three elements.

public byte[] getScratchpad() throws Exception

This function returns a copy of the scratchpad of the currently executing UDF.
You must first declare the UDF with the SCRATCHPAD option.

Appendix A. DB2GENERAL Routines 313

314

public void setScratchpad(byte[]) throws Exception

This function overwrites the scratchpad of the currently executing UDF with
the contents of the given byte array. You must first declare the UDF with the
SCRATCHPAD option. The byte array must have the same size as
getScratchpad() returns.

Related concepts:

* ["'DB2GENERAL Routines” on page 303
* I'DB2GENERAL UDFs” on page 304|

* ['Java Routines” on page 118§|

Related reference:

* ["Supported SQL Data Types in DB2GENERAL Routines” on page 307]
* [‘Java Classes for DB2GENERAL Routines” on page 309
* I'DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
+ 'DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314|
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315
["'DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

DB2GENERAL Java Class: COM.IBM.db2.app.Lob

This class provides utility routines that create temporary Blob or Clob objects
for computation inside routines.

The following methods are associated with the COM.ibm.db2.app.Lob class:
public static Blob newBlob() throws Exception

This function creates a temporary Blob. It will be implemented using a
LOCATOR if possible.

public static Clob newClob() throws Exception

This function creates a temporary Clob. It will be implemented using a
LOCATOR if possible.

Related concepts:

+ I"'DB2GENERAL Routines” on page 303|
+ I'DB2GENERAL UDFs” on page 304]

* ['Java Routines” on page 118|

Related reference:
* [“Supported SQL Data Types in DB2GENERAL Routines” on page 307|
* ['Java Classes for DB2GENERAL Routines” on page 309

Programming Server Applications

['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDF” on page 311]
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|
['DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

DB2GENERAL Java Class: COM.IBM.db2.app.Blob

An instance of this class is passed by the database to represent a BLOB as
routine input, and may be passed back as output. The application may create
instances, but only in the context of an executing routine. Uses of these objects
outside such a context will throw an exception.

The following methods are associated with the COM.ibm.db2.app.Blob class:
public long size() throws Exception

This function returns the length (in bytes) of the BLOB.
public java.io.InputStream getInputStream() throws Exception

This function returns a new InputStream to read the contents of the BLOB.
Efficient seek/mark operations are available on that object.

public java.io.OutputStream getOutputStream() throws Exception

This function returns a new OutputStream to append bytes to the BLOB.
Appended bytes become immediately visible on all existing InputStream
instances produced by this object’s getInputStream() call.

Related concepts:

+ ["'DB2GENERAL Routines” on page 303
+ ["'DB2GENERAL UDFs” on page 304|

* [‘Java Routines” on page 118

Related reference:

* [‘Supported SQL Data Types in DB2GENERAL Routines” on page 307|

* [‘Java Classes for DB2GENERAL Routines” on page 309
['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDE” on page 311|
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314|
['DB2GENERAL Java Class: COM.IBM.db2.app.Clob” on page 315|

DB2GENERAL Java Class: COM.IBM.db2.app.Clob

An instance of this class is passed by the database to represent a CLOB or
DBCLOB as routine input, and may be passed back as output. The application

Appendix A. DB2GENERAL Routines 315

may create instances, but only in the context of an executing routine. Uses of
these objects outside such a context will throw an exception.

Clob instances store characters in the database code page. Some Unicode
characters may not be representable in this code page, and may cause an
exception to be thrown during conversion. This may happen during an
append operation, or during a UDF or StoredProc set () call. This is necessary
to hide the distinction between a CLOB and a DBCLOB from the Java
programmer.

The following methods are associated with the COM.ibm.db2.app.Clob class:
public long size() throws Exception

This function returns the length (in characters) of the CLOB.
public java.io.Reader getReader() throws Exception

This function returns a new Reader to read the contents of the CLOB or
DBCLOB. Efficient seek/mark operations are available on that object.

public java.io.Writer getWriter() throws Exception

This function returns a new Writer to append characters to this CLOB or
DBCLOB. Appended characters become immediately visible on all existing
Reader instances produced by this object’s GetReader() call.

Related concepts:
+ I'DB2GENERAL Routines” on page 303|
+ I'DB2GENERAL UDFs” on page 304]

* ['Java Routines” on page 118|

Related reference:

* ["Supported SQL Data Types in DB2GENERAL Routines” on page 307

* ['Java Classes for DB2GENERAL Routines” on page 309
['DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc” on page 310|
['DB2GENERAL Java Class: COM.IBM.db2.app.UDFE” on page 311|
['DB2GENERAL Java Class: COM.IBM.db2.app.Lob” on page 314
['DB2GENERAL Java Class: COM.IBM.db2.app.Blob” on page 315|

316 Programming Server Applications

Appendix B. DB2 Universal Database technical information

Overview of DB2 Universal Database technical information

DB2 Universal Database technical information can be obtained in the
following formats:

* Books (PDF and hard-copy formats)
* A topic tree (HTML format)

* Help for DB2 tools (HTML format)
¢ Sample programs (HTML format)

¢ Command line help

 Tutorials

This section is an overview of the technical information that is provided and
how you can access it.
Categories of DB2 technical information
The DB2 technical information is categorized by the following headings:
* Core DB2 information
* Administration information
* Application development information
* Business intelligence information
* DB2 Connect information
* Getting started information
* Tutorial information
* Optional component information
* Release notes

The following tables describe, for each book in the DB2 library, the
information needed to order the hard copy, print or view the PDF, or locate
the HTML directory for that book. A full description of each of the books in
the DB2 library is available from the IBM Publications Center at
fwww.ibm.com /shop /publications/order]

The installation directory for the HTML documentation CD differs for each
category of information:

htmlcdpath/doc/htmlcd/%L/category

where:

© Copyright IBM Corp. 1993 - 2002 317

http://www.ibm.com/shop/publications/order

* htmlcdpath is the directory where the HTML CD is installed.
* %L is the language identifier. For example, en_US.

* category is the category identifier. For example, core for the core DB2
information.

In the PDF file name column in the following tables, the character in the sixth
position of the file name indicates the language version of a book. For
example, the file name db2d1e80 identifies the English version of the
Administration Guide: Planning and the file name db2d1g80 identifies the
German version of the same book. The following letters are used in the sixth
position of the file name to indicate the language version:

Language Identifier
Arabic w
Brazilian Portuguese
Bulgarian
Croatian
Czech

Danish

Dutch

English
Finnish
French
German
Greek
Hungarian
Italian
Japanese
Korean
Norwegian
Polish
Portuguese
Romanian
Russian

Simp. Chinese
Slovakian
Slovenian
Spanish
Swedish

Trad. Chinese
Turkish

BT ©®N=NO"®©®<T B X TTON ™Y 000X 0c T

No form number indicates that the book is only available online and does not
have a printed version.

318 Programming Server Applications

Core DB2 information
The information in this category cover DB2 topics that are fundamental to all

DB2 users. You will find the information in this category useful whether you
are a programmer, a database administrator, or you work with DB2 Connect,
DB2 Warehouse Manager, or other DB2 products.

The installation directory for this category is doc/htmlcd/ %L/ core.

Table 17. Core DB2 information

Name Form Number PDF File Name
IBM DB2 Universal Database ~ SC09-4828 db2n0x80
Command Reference

IBM DB2 Universal Database ~ No form number db2t0x80
Glossary

IBM DB2 Universal Database ~ SC09-4839 db2w0x80
Master Index

IBM DB2 Universal Database GC09-4840 db2m1x80
Message Reference, Volume 1

IBM DB2 Universal Database — GC09-4841 db2m2x80
Message Reference, Volume 2

IBM DB2 Universal Database ~ SC09-4848 db2q0x80
What's New

Administration information
The information in this category covers those topics required to effectively

design, implement, and maintain DB2 databases, data warehouses, and
federated systems.

The installation directory for this category is doc/htmlcd/%L/admin.

Table 18. Administration information

Name Form number PDF file name
IBM DB2 Universal Database ~ SC09-4822 db2d1x80
Administration Guide:

Planning

IBM DB2 Universal Database ~ SC09-4820 db2d2x80
Administration Guide:

Implementation

IBM DB2 Universal Database ~ SC09-4821 db2d3x80
Administration Guide:

Performance

IBM DB2 Universal Database ~ SC09-4824 db2b0x80

Administrative API Reference

Appendix B. DB2 Universal Database technical information ~ 319

Table 18. Administration information (continued)

Name Form number PDF file name

IBM DB2 Universal Database ~ SC09-4830 db2dmx80
Data Movement Utilities Guide
and Reference

IBM DB2 Universal Database ~ SC09-4831 db2hax80
Data Recovery and High

Availability Guide and

Reference

IBM DB2 Universal Database ~ SC27-1123 db2ddx80
Data Warehouse Center
Administration Guide

IBM DB2 Universal Database ~ GC27-1224 db2fpx80
Federated Systems Guide
IBM DB2 Universal Database ~ SC09-4851 db2atx80

Guide to GUI Tools for
Administration and
Development

IBM DB2 Universal Database ~ SC27-1121 db2e0x80
Replication Guide and Reference

IBM DB2 Installing and GC09-4823 db2dsx80
Administering a Satellite
Environment

IBM DB2 Universal Database ~ SC09-4844 db2s1x80
SQL Reference, Volume 1

IBM DB2 Universal Database ~ SC09-4845 db2s2x80
SQL Reference, Volume 2

IBM DB2 Universal Database ~ SC09-4847 db2f0x80
System Monitor Guide and
Reference

Application development information
The information in this category is of special interest to application developers

or programmers working with DB2. You will find information about
supported languages and compilers, as well as the documentation required to
access DB2 using the various supported programming interfaces, such as
embedded SQL, ODBC, JDBC, SQLj, and CLI If you view this information
online in HTML you can also access a set of DB2 sample programs in HTML.

320 Programming Server Applications

The installation directory for this category is doc/htmlecd/%L/ad.

Table 19. Application development information

Name Form number PDF file name

IBM DB2 Universal Database ~ SC09-4825 db2axx80
Application Development

Guide: Building and Running

Applications

IBM DB2 Universal Database ~ SC09-4826 db2a1x80
Application Development

Guide: Programming Client

Applications

IBM DB2 Universal Database ~ SC09-4827 db2a2x80
Application Development

Guide: Programming Server

Applications

IBM DB2 Universal Database SC09-4849 db211x80
Call Level Interface Guide and
Reference, Volume 1

IBM DB2 Universal Database ~ SC09-4850 db212x80
Call Level Interface Guide and
Reference, Volume 2

IBM DB2 Universal Database SC27-1124 db2adx80
Data Warehouse Center
Application Integration Guide

IBM DB2 XML Extender SC27-1234 db2sxx80
Administration and
Programming

Business intelligence information
The information in this category describes how to use components that

enhance the data warehousing and analytical capabilities of DB2 Universal
Database.
The installation directory for this category is doc/htmlecd/%L/wareh.

Table 20. Business intelligence information

Name Form number PDF file name

IBM DB2 Warehouse Manager ~ SC27-1125 db2dix80
Information Catalog Center
Administration Guide

IBM DB2 Warehouse Manager ~GC27-1122 db2idx80
Installation Guide

Appendix B. DB2 Universal Database technical information

321

DB2 Connect information
The information in this category describes how to access host or iSeries data

using DB2 Connect Enterprise Edition or DB2 Connect Personal Edition.

The installation directory for this category is doc/htmled/%L/conn.

Table 21. DB2 Connect information

Name Form number PDF file name
APPC, CPI-C, and SNA Sense No form number db2apx80
Codes

IBM Connectivity Supplement ~ No form number db2h1x80

IBM DB2 Connect Quick GC09-4833 db2c6x80

Beginnings for DB2 Connect
Enterprise Edition

IBM DB2 Connect Quick GC09-4834 db2c1x80
Beginnings for DB2 Connect
Personal Edition

IBM DB2 Connect User’s SC09-4835 db2c0x80
Guide

Getting started information
The information in this category is useful when you are installing and

configuring servers, clients, and other DB2 products.

The installation directory for this category is doc/htmled/%L/start.

Table 22. Getting started information

Name Form number PDF file name
IBM DB2 Universal Database — GC09-4832 db2itx80

Quick Beginnings for DB2

Clients

IBM DB2 Universal Database — GC09-4836 db2isx80
Quick Beginnings for DB2

Servers

IBM DB2 Universal Database — GC09-4838 db2i1x80

Quick Beginnings for DB2
Personal Edition

IBM DB2 Universal Database ~ GC09-4837 db2iyx80
Installation and Configuration

Supplement

IBM DB2 Universal Database ~ GC09-4829 db2z6x80

Quick Beginnings for DB2
Data Links Manager

322 Programming Server Applications

Tutorial information

Tutorial information introduces DB2 features and teaches how to perform

various tasks.

The installation directory for this category is doc/htmled/ %L/ tutr.

Table 23. Tutorial information

Name Form number PDF file name
Business Intelligence Tutorial: ~ No form number db2tux80
Introduction to the Data

Warehouse

Business Intelligence Tutorial: ~ No form number db2tax80
Extended Lessons in Data

Warehousing

Development Center Tutorial ~ No form number db2tdx80
for Video Online using

Microsoft Visual Basic

Information Catalog Center No form number db2aix80
Tutorial

Video Central for e-business No form number db2twx80
Tutorial

Visual Explain Tutorial No form number db2tvx80

Optional component information
The information in this category describes how to work with optional DB2

components.

The installation directory for this category is doc/htmled/%L/opt.

Table 24. Optional component information

Name Form number PDF file name
IBM DB2 Life Sciences Data ~ GC27-1235 db21sx80
Connect Planning, Installation,

and Configuration Guide

IBM DB2 Spatial Extender SC27-1226 db2sbx80
User’s Guide and Reference

IBM DB2 Universal Database SC27-1221 db2z0x80

Data Links Manager
Administration Guide and
Reference

Appendix B. DB2 Universal Database technical information 323

Table 24. Optional component information (continued)

Name Form number PDF file name

IBM DB2 Universal Database SH12-6740 N/A
Net Search Extender

Administration and

Programming Guide

Note: HTML for this

document is not installed

from the HTML

documentation CD.

Release notes
The release notes provide additional information specific to your product’s

release and FixPak level. They also provides summaries of the documentation
updates incorporated in each release and FixPak.

Table 25. Release notes

Name Form number PDF file name HTML directory
DB2 Release Notes See note. See note. doc/proded/%L/db2ir

where %L is the
language identifier.

DB2 Connect Release See note. See note. doc/proded/%L/db2cr

Notes
where %L is the

language identifier.

DB2 Installation Notes Available on Available on
product CD-ROM product CD-ROM
only. only.

Note: The HTML version of the release notes is available from the
Information Center and on the product CD-ROMs. To view the ASCII
file:

* On UNIX-based platforms, see the Release.Notes file. This file is
located in the DB2DIR/Readme/ %L directory, where %L represents
the locale name and DB2DIR represents:

— /usr/opt/db2_08_01 on AIX
— /opt/IBM/db2/V8.1 on all other UNIX operating systems

* On other platforms, see the RELEASE.TXT file. This file is located in
the directory where the product is installed.

Related tasks:
* [“Printing DB2 books from PDF files” on page 325|

324 Programming Server Applications

* [‘Ordering printed DB2 books” on page 326
* ["Accessing online help” on page 326|

¢ [‘Finding product information by accessing the DB2 Information Center]
from the administration tools” on page 330

* ["Viewing technical documentation online directly from the DB2 HTML]
Documentation CD” on page 331|

Printing DB2 books from PDF files

You can print DB2 books from the PDF files on the DB2 PDF Documentation
CD. Using Adobe Acrobat Reader, you can print either the entire book or a
specific range of pages.

Prerequisites:

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at[www.adobe.com|

Procedure:

To print a DB2 book from a PDF file:

1. Insert the DB2 PDF Documentation CD. On UNIX operating systems,
mount the DB2 PDF Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:
* On Windows operating systems:

x:\doc\language directory, where x represents the CD-ROM drive letter
and language represents the two-character territory code that represents
your language (for example, EN for English).

* On UNIX operating systems:
/edrom /doc/ %L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

Related tasks:
* [Ordering printed DB2 books” on page 326

* ['Finding product information by accessing the DB2 Information Center]
from the administration tools” on page 330

* ["Viewing technical documentation online directly from the DB2 HTML]
Documentation CD” on page 331|

Related reference:

Appendix B. DB2 Universal Database technical information =~ 325

http://www.adobe.com/

* ["Overview of DB2 Universal Database technical information” on page 317|

Ordering printed DB2 books

Procedure:

To order printed books:

* Contact your IBM authorized dealer or marketing representative. To find a
local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com /shop /planetwide]

¢ Phone 1-800-879-2755 in the United States or 1-800-1BM-4YOU in Canada.

 Visit the IBM Publications Center at
fwww.ibm.com /shop /publications/order|

Related tasks:
* ['Printing DB2 books from PDF files” on page 325
* [‘Finding topics by accessing the DB2 Information Center from a browser”|

on page 328|
* ["Viewing technical documentation online directly from the DB2 HTML]
Documentation CD” on page 331|

Related reference:

+ ["Overview of DB2 Universal Database technical information” on page 317]

Accessing online help

The online help that comes with all DB2 components is available in three

types:
* Window and notebook help

* Command line help
* SQL statement help

Window and notebook help explain the tasks that you can perform in a
window or notebook and describe the controls. This help has two types:

* Help accessible from the Help button

* Infopops

The Help button gives you access to overview and prerequisite information.
The infopops describe the controls in the window or notebook. Window and

notebook help are available from DB2 centers and components that have user
interfaces.

326 Programming Server Applications

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

Command line help includes Command help and Message help. Command
help explains the syntax of commands in the command line processor.
Message help describes the cause of an error message and describes any
action you should take in response to the error.

SQL statement help includes SQL help and SQLSTATE help. DB2 returns an

SQLSTATE value for conditions that could be the result of an SQL statement.
SQLSTATE help explains the syntax of SQL statements (SQL states and class

codes).

Note: SQL help is not available for UNIX operating systems.
Procedure:

To access online help:

¢ For window and notebook help, click Help or click that control, then click
F1. If the Automatically display infopops check box on the General page
of the Tool Settings notebook is selected, you can also see the infopop for a
particular control by holding the mouse cursor over the control.

¢ For command line help, open the command line processor and enter:
— For Command help:

? command
where command represents a keyword or the entire command.

For example, ? catalog displays help for all the CATALOG commands,
while ? catalog database displays help for the CATALOG DATABASE
command.

* For Message help:

? XXXnnnnn
where XXXnnnnn represents a valid message identifier.

For example, ? SQL30081 displays help about the SQL30081 message.
* For SQL statement help, open the command line processor and enter:
— For SQL help:

? sqlstate or ? class code

where sqglstate represents a valid five-digit SQL state and class code
represents the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, while ? 08
displays help for the 08 class code.

— For SQLSTATE help:

Appendix B. DB2 Universal Database technical information ~ 327

help statement
where statement represents an SQL statement.
For example, help SELECT displays help about the SELECT statement.

Related tasks:

+ [“Finding topics by accessing the DB2 Information Center from a browser”|
on page 328

* ['Viewing technical documentation online directly from the DB2 HTML/
Documentation CD” on page 331|

Finding topics by accessing the DB2 Information Center from a browser

The DB2 Information Center accessed from a browser enables you to access
the information you need to take full advantage of DB2 Universal Database
and DB2 Connect. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, metadata,
Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser is composed of the
following major elements:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topics, the glossary,
and the master index in the DB2 Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. The navigation toolbar contains buttons that enable you to
search the DB2 Information Center, hide the navigation tree, and find
the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. The content frame displays topics from the DB2 Information
Center when you click on a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index.

Prerequisites:

To access the DB2 Information Center from a browser, you must use one of
the following browsers:

* Microsoft Explorer, version 5 or later
* Netscape Navigator, version 6.1 or later

328 Programming Server Applications

Restrictions:

The DB2 Information Center contains only those sets of topics that you chose
to install from the DB2 HTML Documentation CD. If your Web browser returns
a File not found error when you try to follow a link to a topic, you must
install one or more additional sets of topics DB2 HTML Documentation CD.

Procedure:

To find a topic by searching with keywords:
1. In the navigation toolbar, click Search.

2. In the top text entry field of the Search window, enter two or more terms
related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.

Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

To find a topic in the navigation tree:

1. In the navigation tree, click the book icon of the category of topics related
to your area of interest. A list of subcategories displays underneath the
icon.

2. Continue to click the book icons until you find the category containing
the topics in which you are interested. Categories that link to topics
display the category title as an underscored link when you move the
cursor over the category title. The navigation tree identifies topics with a
page icon.

3. Click the topic link. The topic displays in the content frame.

To find a topic or term in the master index:

1. In the navigation tree, click the “Index” category. The category expands to
display a list of links arranged in alphabetical order in the navigation tree.

2. In the navigation tree, click the link corresponding to the first character of
the term relating to the topic in which you are interested. A list of terms
with that initial character displays in the content frame. Terms that have
multiple index entries are identified by a book icon.

3. Click the book icon corresponding to the term in which you are
interested. A list of subterms and topics displays below the term you
clicked. Topics are identified by page icons with an underscored title.

4. Click on the title of the topic that meets your needs. The topic displays in
the content frame.

Appendix B. DB2 Universal Database technical information 329

Related concepts:

e [“Accessibility” on page 337
y pag

* ['DB2 Information Center for topics” on page 339

Related tasks:

¢ ["Finding product information by accessing the DB2 Information Centeﬂ
from the administration tools” on page 330

+ ["Updating the HTML documentation installed on your machine” on paged
332

* ["Troubleshooting DB2 documentation search with Netscape 4.x” on page|
334

* ['Searching the DB2 documentation” on page 335|

Related reference:

* ["Overview of DB2 Universal Database technical information” on page 317]

Finding product information by accessing the DB2 Information Center from the
administration tools

330

The DB2 Information Center provides quick access to DB2 product
information and is available on all operating systems for which the DB2
administration tools are available.

The DB2 Information Center accessed from the tools provides six types of
information.
Tasks Key tasks you can perform using DB2.

Concepts
Key concepts for DB2.

Reference
DB2 reference information, such as keywords, commands, and APIs.

Troubleshooting
Error messages and information to help you with common DB2
problems.

Samples
Links to HTML listings of the sample programs provided with DB2.

Tutorials
Instructional aid designed to help you learn a DB2 feature.

Prerequisites:

Programming Server Applications

Some links in the DB2 Information Center point to Web sites on the Internet.
To display the content for these links, you will first have to connect to the
Internet.

Procedure:

To find product information by accessing the DB2 Information Center from
the tools:

1. Start the DB2 Information Center in one of the following ways:

* From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

e At the command line, enter db2ic.

2. Click the tab of the information type related to the information you are
attempting to find.

3. Navigate through the tree and click on the topic in which you are
interested. The Information Center will then launch a Web browser to
display the information.

4. To find information without browsing the lists, click the Search icon to the
right of the list.

Once the Information Center has launched a browser to display the
information, you can perform a full-text search by clicking the Search icon
in the navigation toolbar.

Related concepts:

* [“Accessibility” on page 337

+ ['DB2 Information Center for topics” on page 339

Related tasks:

* [“Finding topics by accessing the DB2 Information Center from a browser”

on page 328|

* ['Searching the DB2 documentation” on page 335|

Viewing technical documentation online directly from the DB2 HTML
Documentation CD

All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without having to install it.

Restrictions:

Appendix B. DB2 Universal Database technical information 331

Because the following items are installed from the DB2 product CD and not
the DB2 HTML Documentation CD, you must install the DB2 product to view
these items:

* Tools help
e DB2 Quick Tour
* Release notes

Procedure:

1. Insert the DB2 HTML Documentation CD. On UNIX operating systems,
mount the DB2 HTML Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start your HTML browser and open the appropriate file:
* For Windows operating systems:
e:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where ¢ represents the CD-ROM drive, and %L is the locale of the
documentation that you wish to use, for example, en_US for English.

¢ For UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where /cdrom/ represents where the CD is mounted, and %L is the locale
of the documentation that you wish to use, for example, en_US for
English.

Related tasks:

+ ['Finding topics by accessing the DB2 Information Center from a browser”|

on page 328|

* ["Copying files from the DB2 HTML Documentation CD to a Web Server”|

on page 334|

Related reference:

* ["Overview of DB2 Universal Database technical information” on page 317|

Updating the HTML documentation installed on your machine

It is now possible to update the HTML installed from the DB2 HTML
Documentation CD when updates are made available from IBM. This can be
done in one of two ways:

* Using the Information Center (if you have the DB2 administration GUI
tools installed).

* By downloading and applying a DB2 HTML documentation FixPak .

332 Programming Server Applications

Note: This will NOT update the DB2 code; it will only update the HTML
documentation installed from the DB2 HTML Documentation CD.

Procedure:

To use the Information Center to update your local documentation:
1. Start the DB2 Information Center in one of the following ways:

* From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

¢ At the command line, enter db2ic.

2. Ensure your machine has access to the external Internet; the updater will
download the latest documentation FixPak from the IBM server if
required.

3. Select Information Center —> Update Local Documentation from the
menu to start the update.

4. Supply your proxy information (if required) to connect to the external
Internet.

The Information Center will download and apply the latest documentation
FixPak, if one is available.

To manually download and apply the documentation FixPak :
1. Ensure your machine is connected to the Internet.

2. Open the DB2 support page in your Web browser at:
fwww.ibm.com /software/data/db2 /udb/winos2unix /support|

3. Follow the link for version 8 and look for the "Documentation FixPaks”
link.

4. Determine if the version of your local documentation is out of date by
comparing the documentation FixPak level to the documentation level you
have installed. This current documentation on your machine is at the
following level: DB2 v8.1 GA.

5. If there is a more recent version of the documentation available then
download the FixPak applicable to your operating system. There is one
FixPak for all Windows platforms, and one FixPak for all UNIX platforms.

6. Apply the FixPak:

* For Windows operating systems: The documentation FixPak is a self
extracting zip file. Place the downloaded documentation FixPak in an
empty directory, and run it. It will create a setup command which you
can run to install the documentation FixPak.

* For UNIX operating systems: The documentation FixPak is a
compressed tar.Z file. Uncompress and untar the file. It will create a
directory named delta_install with a script called installdocfix. Run
this script to install the documentation FixPak.

Appendix B. DB2 Universal Database technical information 333

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Related tasks:
* ["Copying files from the DB2 HTML Documentation CD to a Web Server”|

on page 334|

Related reference:

* ["Overview of DB2 Universal Database technical information” on page 317|

Copying files from the DB2 HTML Documentation CD to a Web Server

The entire DB2 information library is delivered to you on the DB2 HTML
Documentation CD, so you can install the library on a Web server for easier
access. Simply copy to your Web server the documentation for the languages
that you want.

Procedure:

To copy files from the DB2 HTML Documentation CD to a Web server, use the
appropriate path:
* For Windows operating systems:

E:\Program Files\sqllib\doc\htmlcd\%L*.*

where E represents the CD-ROM drive and %L represents the language
identifier.

* FPor UNIX operating systems:
/cdrom:Program Files/sql1ib/doc/htmlcd/%L/*.*

where cdrom represents the CD-ROM drive and %L represents the language
identifier.

Related tasks:
* ['Searching the DB2 documentation” on page 335|

Related reference:

* “Supported DB2 interface languages, locales, and code pages” in the Quick
Beginnings for DB2 Servers

* ["Overview of DB2 Universal Database technical information” on page 317|

Troubleshooting DB2 documentation search with Netscape 4.x

Most search problems are related to the Java support provided by web
browsers. This task describes possible workarounds.

Procedure:

334 Programming Server Applications

A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following workaround, especially if you see the
following line in the browser Java console:

Cannot find class java/security/InvalidParameterException
* On Windows operating systems:

From the DB2 HTML Documentation CD, copy the supplied x:Program
Files\sqllib\doc\htmlcd\locale\InvalidParameterException.class file to
the java\classes\java\security\ directory relative to your Netscape
browser installation, where x represents the CD-ROM drive letter and locale
represents the name of the desired locale.

Note: You may have to create the java\security\ subdirectory structure.
¢ On UNIX operating systems:

From the DB2 HTML Documentation CD, copy the supplied /cdrom/Program
Files/sq11ib/doc/htmlcd/locale/InvalidParameterkException.class file to
the java/classes/java/security/ directory relative to your Netscape
browser installation, where cdrom represents the mount point of the
CD-ROM and locale represents the name of the desired locale.

Note: You may have to create the java/security/ subdirectory structure.

If your Netscape browser still fails to display the search input window, try the
following:

* Stop all instances of Netscape browsers to ensure that there is no Netscape
code running on the machine. Then open a new instance of the Netscape
browser and try to start the search again.

* Purge the browser’s cache.

* Try a different version of Netscape, or a different browser.

Related tasks:
* ['Searching the DB2 documentation” on page 335|

Searching the DB2 documentation

To search DB2’s documentation, you need Netscape 6.1 or higher, or
Microsoft’s Internet Explorer 5 or higher. Ensure that your browser’s Java
support is enabled.

A pop-up search window opens when you click the search icon in the
navigation toolbar of the Information Center accessed from a browser. If you
are using the search for the first time it may take a minute or so to load into
the search window.

Restrictions:

Appendix B. DB2 Universal Database technical information 335

The following restrictions apply when you use the documentation search:

* Boolean searches are not supported. The boolean search qualifiers and and
or will be ignored in a search. For example, the following searches would
produce the same results:

— servlets and beans
— servlets or beans

* Wildcard searches are not supported. A search on java* will only look for
the literal string java* and would not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

To search the DB2 documentation:
1. In the navigation toolbar, click Search.

2. In the top text entry field of the Search window, enter two or more terms
related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.

Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

Note: When you perform a search, the first result is automatically loaded into
your browser frame. To view the contents of other search results, click
on the result in results lists.

Related tasks:

* ["Troubleshooting DB2 documentation search with Netscape 4.x” on page|
334

Online DB2 troubleshooting information

336

With the release of DB2® UDB Version 8, there will no longer be a
Troubleshooting Guide. The troubleshooting information once contained in this
guide has been integrated into the DB2 publications. By doing this, we are
able to deliver the most up-to-date information possible. To find information
on the troubleshooting utilities and functions of DB2, access the DB2
Information Center from any of the tools.

Refer to the DB2 Online Support site if you are experiencing problems and
want help finding possible causes and solutions. The support site contains a

Programming Server Applications

large, constantly updated database of DB2 publications, TechNotes, APAR
(product problem) records, FixPaks, and other resources. You can use the
support site to search through this knowledge base and find possible solutions
to your problems.

Access the Online Support site at

www.ibm.com /software/data/db2/udb/winos2unix/support, or by clicking
the Online Support button in the DB2 Information Center. Frequently
changing information, such as the listing of internal DB2 error codes, is now
also available from this site.

Related concepts:

* ['DB2 Information Center for topics” on page 339

Related tasks:

* ["Finding product information by accessing the DB2 Information Cented
from the administration tools” on page 330

Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in DB2® Universal Database Version 8:

* DB2 allows you to operate all features using the keyboard instead of the
mouse. See [“Keyboard Input and Navigation”]

¢ DB2 enables you customize the size and color of your fonts. See
[Display” on page 338|

* DB2 allows you to receive either visual or audio alert cues. See
[Alert Cues” on page 338

« DB2 supports accessibility applications that use the Java " Accessibility APL
See [‘Compatibility with Assistive Technologies” on page 338}

* DB2 comes with documentation that is provided in an accessible format.
See [“Accessible Documentation” on page 338,

Keyboard Input and Navigation

Keyboard Input
You can operate the DB2 Tools using only the keyboard. You can use keys or

key combinations to perform most operations that can also be done using a
mouse.

Appendix B. DB2 Universal Database technical information ~ 337

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Keyboard Focus
In UNIX-based systems, the position of the keyboard focus is highlighted,

indicating which area of the window is active and where your keystrokes will
have an effect.

Accessible Display

The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font Settings
The DB2 Tools allow you to select the color, size, and font for the text in

menus and dialog windows, using the Tools Settings notebook.

Non-dependence on Color
You do not need to distinguish between colors in order to use any of the

functions in this product.

Alternative Alert Cues
You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

Compatibility with Assistive Technologies

The DB2 Tools interface supports the Java Accessibility API enabling use by
screen readers and other assistive technologies used by people with
disabilities.

Accessible Documentation

Documentation for the DB2 family of products is available in HTML format.
This allows you to view documentation according to the display preferences
set in your browser. It also allows you to use screen readers and other
assistive technologies.

DB?2 tutorials

The DB2® tutorials help you learn about various aspects of DB2 Universal
Database. The tutorials provide lessons with step-by-step instructions in the
areas of developing applications, tuning SQL query performance, working
with data warehouses, managing metadata, and developing Web services
using DB2.

Before you begin:

Before you can access these tutorials using the links below, you must install
the tutorials from the DB2 HTML Documentation CD-ROM.

338 Programming Server Applications

If you do not want to install the tutorials, you can view the HTML versions of
the tutorials directly from the DB2 HTML Documentation CD. PDF versions of
these tutorials are also available on the DB2 PDF Documentation CD.

Some tutorial lessons use sample data or code. See each individual tutorial for
a description of any prerequisites for its specific tasks.

DB2 Universal Database tutorials:

If you installed the tutorials from the DB2 HTML Documentation CD-ROM,
you can click on a tutorial title in the following list to view that tutorial.

[Business Intelligence Tutorial: Introduction to the Data Warehouse Center|
Perform introductory data warehousing tasks using the Data
Warehouse Center.

[Business Intelligence Tutorial: Extended Lessons in Data Warehousing|
Perform advanced data warehousing tasks using the Data Warehouse
Center.

[Development Center Tutorial for Video Online using Microsoft® Visual Basid
Build various components of an application using the Development
Center Add-in for Microsoft Visual Basic.

[[nformation Catalog Center Tutoriall
Create and manage an information catalog to locate and use metadata
using the Information Catalog Center.

[Video Central for e-business Tutorial]
Develop and deploy an advanced DB2 Web Services application using
WebSphere® products.

[Visual Explain Tutorial|
Analyze, optimize, and tune SQL statements for better performance
using Visual Explain.

DB2 Information Center for topics

The DB2® Information Center gives you access to all of the information you
need to take full advantage of DB2 Universal Database " and DB2 Connect" "
in your business. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, the
Information Catalog Center, Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser has the following
features:

Regularly updated documentation
Keep your topics up-to-date by downloading updated HTML.

Appendix B. DB2 Universal Database technical information 339

../tutr/db2tu/index.htm
../tutr/db2ta/index.htm
../tutr/db2td/index.htm
../tutr/db2ai/index.htm
../tutr/db2tw/index.htm
../tutr/db2tv/index.htm

Search
Search all of the topics installed on your workstation by clicking
Search in the navigation toolbar.

Integrated navigation tree
Locate any topic in the DB2 library from a single navigation tree. The
navigation tree is organized by information type as follows:

* Tasks provide step-by-step instructions on how to complete a goal.
* Concepts provide an overview of a subject.
* Reference topics provide detailed information about a subject,

including statement and command syntax, message help,
requirements.

Master index
Access the information in topics and tools help from one master
index. The index is organized in alphabetical order by index term.

Master glossary
The master glossary defines terms used in the DB2 Information
Center. The glossary is organized in alphabetical order by glossary
term.

Related tasks:

+ [“Finding topics by accessing the DB2 Information Center from a browser”|

on page 328|

* [‘Finding product information by accessing the DB2 Information Center
from the administration tools” on page 330

+ ["Updating the HTML documentation installed on your machine” on page
332

340 Programming Server Applications

Appendix C. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993 - 2002 341

342

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Programming Server Applications

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix C. Notices 343

Trademarks

344

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C Set++

C/370

CICS

Database 2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2 Connect

DB2 Extenders

DB2 OLAP Server

DB2 Universal Database

Distributed Relational
Database Architecture

DRDA

eServer

Extended Services

FFST

First Failure Support Technology

IBM

IMS

IMS/ESA

iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
0S/390
0S/400
PowerPC
pSeries
QBIC

QMF

RACF

RISC System /6000
RS/6000
S/370

SP

SQL /400
SQL/DS
System /370
System /390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-0S/2
z/0S
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2

UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Programming Server Applications

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Appendix C. Notices 345

346 Programming Server Applications

Index

A

accessibility
features 337
activation time, triggers 284
ADD METHOD clause on ALTER
TYPE statement 206
ALLOCATE CURSOR statement
caller routine 42
ALTER VIEW statement
structured types 231
ASSOCIATE RESULT SET
LOCATOR statement 42
authorizations
for external routines 92

B

BASIC data types
OLE automation 134
BASIC language
OLE automation routines 130
BigDecimal Java data type 123
BIGINT data type
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
BIGINT SQL data type
Java 123
bind behavior,
DYNAMICRULES 94
binding
routines 92
BLOB data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106

C
C
routines
include file 102
performance 16

syntax for passing
arguments 74

© Copyright IBM Corp. 1993 - 2002

C (continued)
stored procedures
parameter handling 47
C/C++ language
routines 97
C++
routines
include file 102
type decoration for routine
bodies 116
C++ data types, OLE
automation 134
call-type argument, table
functions 54
caller routine, receiving result
sets 42
CAST FROM clause, CREATE
FUNCTION statement 106
CHAR data type
Java 123
OLE DB table function 143
routines, Java
(DB2GENERAL) 307
user-defined functions
(UDFs) 106
CHAR FOR BIT DATA data
type 307
client transforms
binding in instances from a client
application 263
converting data types 263
implemented using external
UDFs 262
overview 259
CLOB (character large object) data
type
Java 123
OLE DB table function 143
routines, Java
(DB2GENERAL) 307
user-defined functions (UDFs),
C/C++ 106
CLP (command line processor)
terminating character 59
code pages
routines
conversion 152
COM.ibm.db2.app.Blob 307, 315
COM.ibm.db2.app.Clob 307, 315

COM.ibm.db2.app.Lob 314
COM.ibm.db2.app.StoredProc 310
COM.ibm.db2.app.UDF 304, 311
condition handler
CONTINUE clause 68
example 64
in SQL procedures 63
RESIGNAL statement 67
SIGNAL statement 67
SQL procedures
declaration 64
constraints
triggers, interaction 279
constructor functions 210
CONTAINS SQL clause
external routines 89
CREATE FUNCTION statement
CAST FROM clause 106
LANGUAGE OLE clause 130
OLE automation routines 130
RETURNS clause 106
CREATE METHOD statement
examples 206
CREATE TABLE statement
defining column options 212
CREATE TRIGGER statement
AFTER clause 279, 284
BEFORE clause 279, 284
INSTEAD OF clause 279, 284
REFERENCING clause 288
CREATE TYPE statement
REF USING clause 223
structured types 204
cursors
routines 89

D

data types
conversion
OLE automation types 133
transform functions 263
Java 123
DATE data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
DB2 documentation search
using Netscape 4.x 334
DB2 Information Center 339

347

DB2 tutorials 338
DB2DBG.ROUTINE_DEBUG debug
table 128
DB2GENERAL parameter style for
external routines 71
DB2GENERAL routines 303
Java classes 309
COM.ibm.db2.app.
StoredProc 310
COM.ibm.db2.app.Blob 315
COM.ibm.db2.app.Clob 315
COM.ibm.db2.app.Lob 314
COM.ibm.db2.app.UDF 311
stored procedures 310
user-defined functions 304, 311
DB2SQL parameter style for external
routines 71
DBCLOB data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
dbinfo argument
table functions 54
DBINFO option
code pages 152
debug table
populating 127
debugging
routines 31
stored procedures
development center 125
DECIMAL data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
DECIMAL parameter 106
define behavior,
DYNAMICRULES 94
DELETE
triggers 286
DEREF function 232
privileges required 232
dereference operators 224
queries using 232
DESCRIBE statement
structured types 274
Development Center
debug table 127
debugging Java stored
procedures 125
environment settings 125

348

disability 337
distinct types
assigning comparison types 193
comparing with constant
values 191
comparing with other distinct
types 192, 195
joins 196
passing to routines 159
UNION clauses 196
DOUBLE data type
user-defined functions (UDFs)
C/C 106
double Java data type 123
DOUBLE parameter 106
DROP TABLE statement
structured types 216
DROP VIEW statement
structured types 232
dynamic SQL
assigning types 194
effects of DYNAMICRULES 94
SQL procedures 60
dynamic types, structured
types 217
DYNAMICRULES option
effects on dynamic SQL 94

E

error messages
displaying for SQL
procedures 62
examples
distinct types
assigning comparison
type 195
assigning comparison
types 193
comparing with constant
values 191
comparing with distinct
types 192
distinct types in UNION 196
dynamic SQL
assigning types 194
EXECUTE statement
dynamic SQL
SQL procedures 60
EXTERNAL NAME clause
CREATE FUNCTION statement
OLE DB table functions 142
external routines
parameter styles 71

Programming Server Applications

F

FLOAT data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
floating point parameter 106
function transforms
implemented as SQL-bodied
routines 255
overview 253
passing parameters to external
routines 257
functions
references to, syntax 156
scalar
DEREF 232
TYPE_ID 232
TYPE_NAME 232
TYPE_SCHEMA 232
selection 157
selection algorithm 157

G
GENERAL parameter style for
external routines 71
GENERAL WITH NULLS parameter
style for external routines 71
GRANT statement
issuing on table hierarchies 212
GRAPHIC data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
graphic host variables
routines 115
GRAPHIC parameter 106

H

handlers
example 64
hierarchy 203, 204
host variables
declaring
structured types 273

infix notation
user-defined functions
(UDFs) 157
INHERIT SELECT PRIVILEGES
clause 212

Int Java data type 123
INTEGER data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
invoke behavior,
DYNAMICRULES 94
invoking
routines 145
stored procedures 146
UDFs 148
user-defined table functions 149
IS OF predicate
restricting returned types
with 235
isolation levels
routines 89

J

Java
COM.ibm.db2.app.
StoredProc 310
COM.ibm.db2.app.Blob 315
COM.ibm.db2.app.Clob 315
COM.ibm.db2.app.Lob 314
COM.ibm.db2.app.UDF 311
COM.ibm.db2.app.UDF
methods 304
JAR files 122
packages and classes,
COM.ibm.db2.app 123
parameter style for external
routines 71
routines 118
DB2GENERAL 303
performance 16
stored procedures 118
DB2DBG.ROUTINE_DEBUG
debug table 128
debugging 125
for warehouse
transformers 122
invoking debugger 128
parameter handling 47
preparing to debug 125
table functions execution
model 57
UDFs 304
FENCED 304
NOT FENCED 304
scratchpads 304

Java (continued)
UDFs (user-defined functions)
CALL statement for JAR
files 122
Java data types
BigDecimal 123
Blob 123
Double 123
Int 123
java.math.BigDecimal 123
Short 123
String 123
java.math.BigDecimal Java data
type 123
JDBC stored procedures
returning result sets 41
joins
distinct types 196

L

LANGUAGE OLE clause
CREATE FUNCTION
statement 130
LOB (large object) data types
passing to routines 160
log file directory for SQL
procedures 62
LONG VARCHAR data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
LONG VARCHAR FOR BIT DATA
data type
routines
Java (DB2GENERAL) 307
LONG VARGRAPHIC
parameter to UDF 106
LONG VARGRAPHIC data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307

M

methods
overview 10
routines 3

MODIFIES SQL DATA clause
external routines 89

NO SQL clause
external routines 89

NOT FENCED routines 20
NUMERIC data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
NUMERIC parameter 106

O

object identifier columns
description 223
naming 212
object identifiers
creating constraints 222
generating automatically 220
object instances
OLE automation routines 132
Object Linking and Embedding
(OLE) 130
observer methods 211
OLE automation
BSTR data type 134
class identifier (CLSID) 130
controllers 130
methods 130
OLECHAR data type 134
programmatic identifier
(progID) 130
routines
defining 130
invoking methods 132
object instances 132
SCRATCHPAD option 132
servers 130
string data types 134
OLE automation routines
design 130
OLE DB
rowset names, fully
qualified 142
table functions
connection string in
EXTERNAL NAME
clause 139
CONNECTSTRING
option 139
creating 139
user-defined 138
using server name 139
OLE DB data types
converting to SQL data
types 143
OLE routines
syntax for passing arguments 74

Index 349

online
help, accessing 326
ONLY clause
restricting returned types
with 234
ordering DB2 books 326
OUTER keyword

returning subtype attributes 236

overloading
routine names 154

P
PARAMETER STYLE JAVA
routines 118
parameter styles for external
routines 71
passing distinct types to
routines 159
passing LOBs to routines 160
performance
improving
with routines 5
routines 16
PREPARE statement
dynamic SQL
SQL procedures 60
printed books, ordering 326
procedures
parameter handling 47
routines 3
PROGRAM TYPE MAIN clause
stored procedures
parameter handling 47
PROGRAM TYPE SUB clause
stored procedures
parameter handling 47
programming considerations
routines, supported
languages 13

R

RAISE_ERROR scalar function
description 292
READS SQL DATA clause
external routines 89
REAL data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
receiving result sets
in JDBC applications and
routines 45

receiving result sets (continued)
in SQLj applications and
routines 44
receiving result sets as caller
routine 42
REF USING clause, CREATE TYPE
statement 223
reference types
casting 209
comparing 209
comparison with referential
constraints 224
dereference operator 224
description 223
references
columns 212, 229
defining relationships 224
REFERENCING clause
CREATE TRIGGER
statement 288
referential integrity
comparison to scoped
references 228
registering
routines 27
representation types 223
restrictions
routines 24
result sets
from stored procedures 36
receiving in JDBC applications
and routines 45
receiving in SQLj applications
and routines 44
returning from a JDBC stored
procedure 41
returning from a SQL
procedure 38
returning from a SQLj stored
procedure 40
returning result sets
from JDBC stored procedures
from SQL procedures 38

from SQLjj stored procedures 40

RETURNS clause
CREATE FUNCTION
statement 106
REVOKE statement

issuing on table hierarchies 212

root types 203
routines
altering 23
benefits 5
C/C++ 97
caller, receiving result sets 42

350 Programming Server Applications

41

routines (continued)

classes 23
code pages
conversion 152
cursors 89
DB2GENERAL 303
COM.ibm.db2.app.Blob 315
COM.ibm.db2.app.Clob 315
COM.ibm.db2.app.Lob 314
Java classes 309
debugging 31
defining scratchpad structure 52
external
authorizations for 92
overview 3
parameter styles 71
SQLin 89
function path 154
graphic host variables 115
invoking 145
32-bit routines on a 64-bit
database server 151
isolation levels 89
issuing CREATE statements 59
Java 118
libraries 23
methods 10
name 154
nested 151
NOT FENCED
performance 16
security 20
OLE automation
defining 130
overloading 154
passing distinct types to 159
passing LOBs to 160
performance 16
portability between 32-bit and
64-bit platforms 52
programming languages
supported 13
reading conflicts 33
recursive 151
registering 27
restrictions 24
scalar UDFs
overview 8
security 20
SQL 3
stored procedures
overview 7
syntax for passing arguments 74
THREADSAFE
performance 16

routines (continued)
THREADSAFE (continued)
security 20
user-defined table functions
overview 9
WCHARTYPE precompiler
option 115
writing 29
writing conflicts 33
Trow sets
fully qualified names, OLE
DB 142

run behavior, DYNAMICRULES 94

S

savepoints
procedures 89
scalar UDFs processing model 53
scope
in typed tables 212
scoped references
comparison to referential
integrity 228
SCRATCHPAD option
OLE automation routines 132
preserving state 49
user-defined functions
(UDFs) 49
scratchpads 16
32-bit and 64-bit platforms 52
for UDFs and methods 49
Java UDFs 304
SELECT statement
dereference operators 232
inheriting privileges from
supertables 212
scoped references 232
short Java data type 123
SIGNAL SQLSTATE statement,
triggers 275
SMALLINT data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
user-defined functions (UDFs)
C/C 106
SQL (Structured Query Language)
in external routines 89
parameter style for external
routines 71
routines, performance 16
SQL data types
converting to OLE DB data
types 143

SQL data types (continued)
Java 123
routines
Java (DB2GENERAL) 307
supported in OLE
automation 133
user-defined functions
(UDFs) 106
SQL procedures
condition handlers
declaration 64
condition handling 63
displaying error messages 62
dynamic SQL 60
returning result sets 38
SQLCODE and SQLSTATE
variables 68
SQL-result argument
table functions 54
SQL-result-ind argument
table functions 54
SQLCODE
variables in SQL procedures 68
sqldbchar data type
in C/C++ routines 106
SQLjj stored procedures
returning result sets 40
SQLSTATE
raising with SIGNAL and
RESIGNAL statements 67
variables in SQL procedures 68
SQLUDF include file
C/C++ routines 102
static SQL
transform groups for structured
types, bind options 251
static types, structured 217
stored procedures
debugging
development center 125
invoking 146
overview 7
parameters
IN 35
INOUT 35
OUT 35
references to, syntax 161
returning result sets 36
selection 162
selection algorithm 162
String Java data type 123
structured types
comparing instances with 235
constructor functions 210
creating an instance of 210

structured types (continued)

creating typed views 229
declaring host variables 273
defining attributes 241
defining behavior
ADD METHOD clause 206
CREATE METHOD
statement 206
DESCRIBE statement 274
dynamic types 217
FROM SQL function
transforms 253, 259
hierarchy 203, 204
inheritance 203
inheritance, controlling with
ONLY clause 212
inserting instances into
columns 242
instantiable types 203
invoking methods 242
noninstantiable types 203
object identifiers
creating constraints 222
generating automatically 220
observer methods 211
passing instances to client
applications 259
passing instances to external
routines 253
reference columns
defining scope 212
references
comparison with referential
constraints 224
dereference operator 224
referring to row objects 223
representation types 223
restrictions, dropping 185
retrieving instances
as attribute values 211
as single values 243
retrieving internal ID 232
retrieving schema name 232
retrieving subtype attributes 245
retrieving type name 232
returning information about 246
static types 217
storing 202
storing instances as rows 218
storing objects in columns 237

subtypes
returning attributes using
OUTER 236

transform functions 269

Index 351

structured types (continued)

transform groups
naming 248

typed tables
accessing subtypes 218
accessing subtypes in type

hierarchy 217

column options 212
controlling privileges 212
creating 218
defining relationships 224

object identifier columns 212

self-referencing 225

updating attributes 243, 245

substitutability, structured
types 217

subtables

creating 218

inheriting attributes 212
subtypes

example 204

inheritance 203

returning attributes using

OUTER 236

transform functions 266, 269
supertypes

columns 204

in structured type

hierarchies 203

system catalogs

dropping

view implications 232

T

table functions
Java execution model 57
table user-defined functions (UDFs)
processing model 55
tables
access
routines reading and writing
conflicts 33
THREADSAFE routines 20
TIME data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
TIME parameter 106
TIMESTAMP data type
Java 123
OLE DB table function 143
routines
Java (DB2GENERAL) 307
TIMESTAMP parameter 106

transformations
functions
associating with structured
types 246
binding in subtypes 269
passing objects to external
routines 253
passing structured types to
client applications 259
requirements 264
subtype parameters 266
groups
dynamic SQL 250
external routines 250
naming 248
static SQL 251
transition tables, rules 288
TREAT expression 245
triggered action condition 289
triggers
activation time 284
after updates 284
before updates 284
constraints, interaction 279
deleting 278
INSERT operation 278
INSTEAD OF activation 279,
284
multiple, ordering 293
RAISE_ERROR function 292
referential constraints,
interaction 279
returning SQLSTATE 275
sequencing 293
transition tables 288
transition variables
description 286
NEW AS correlation

name 286
OLD AS correlation
name 286

triggered action condition 289
triggered SQL statements 289
updates
UPDATE operation 278
WHEN clause 289
troubleshooting
DB2 documentation search 334
online information 336
tutorials 338
type decoration
C++ routine bodies 116
type mapping
OLE automation
BASIC types 134

352 Programming Server Applications

TYPE predicate
restricting returned types
with 235
TYPE_ID function
dereferencing references 232
TYPE_NAME function
dereferencing references 232
TYPE_SCHEMA function
dereferencing references 232
typed tables
accessing subtypes in type
hierarchy 218
column options 212
controlling privileges 212
creating 212
creating subtables 218
defining relationships 224, 225
defining scope 212
description 218
determining hierarchy
position 212
dropping
DROP TABLE statement 216
implications for system
catalogs 216
object identifier columns 212
restrictions 216
returning subtype attributes 236
self-referencing 225
structured types 216
typed views
assigning scope to reference
columns 229
body 229
creating
on root types 229
on subtypes 229

U

UDFs (user-defined functions)
invoking 148
scalar, FINAL CALL 53
scratchpad portability between
32-bit and 64-bit platforms 52
table
FINAL CALL 55
NO FINAL CALL 55
table, processing model 55
UNION clauses, distinct types 196
user-defined functions (UDFs)
C/C++
arguments 106
BIGINT data type 106
BLOB data type 106
CHAR data type 106

user-defined functions (UDFs)
(continued)
C/C++ (continued)
CLOB data type 106
DBCLOB data type 106
DOUBLE data type 106
FLOAT data type 106
INTEGER data type 106
LONG VARCHAR data
type 106
parameters 106
REAL data type 106
SMALLINT data type 106
VARCHAR FOR BIT DATA
data type 106
VARGRAPHIC data type 106
date parameters 106
DETERMINISTIC 49
FOR BIT DATA modifier 106
infix notation 157
Java
1/0 restrictions 304
NOT DETERMINISTIC 49
re-entrant 49
returning data 106
routines 3
saving state 49
SCRATCHPAD option 49
table
SQL-result argument 54
SQL-result-ind argument 54
user-defined OLE DB tables
functions 138
user-defined table functions
invoking 149
overview 9
user-defined types (UDTs)
restrictions, dropping 185

Vv

VARCHAR data type
Java 123
OLE DB table function 143
routines, Java
(DB2GENERAL) 307
VARCHAR FOR BIT DATA data
type
routines, Java
(DB2GENERAL) 307
user-defined functions (UDFs),
C/C++ 106
VARGRAPHIC data type
Java 123
OLE DB table function 143

VARGRAPHIC data type (continued)
routines, Java
(DB2GENERAL) 307
user-defined functions (UDFs),
C/C++ 106
views
dropping 231, 232
dropping, implications for system
catalogs 232
restrictions 231, 232
structured types 232

wW

wchart data type 106
WCHARTYPE NOCONVERT
precompiler option 115
WITH OPTIONS clause
defining column options 212
defining reference column
scope 212
writing routines 29

Index

353

354 Programming Server Applications

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
* 1-800-237-5511 for customer service

* 1-888-426-4343 to learn about available service options

* 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:

* 1-800-IBM-SERV (1-800-426-7378) for customer service

* 1-800-465-9600 to learn about available service options

* 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com /planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:

* 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general
information.

* 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide|

© Copyright IBM Corp. 1993 - 2002 355

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Part Number: CT17UNA

Printed in U.S.A.

SC09-4827-00

(1P) P/N: CT17UNA

suoneor|ddy 1oatog Surwureidor oeseqere esoatun zg Ngl

mw COmmLO\/

:uoLjewao UL autds

	Contents
	About This Book
	Part 1. Routines (Stored Procedures, UDFs, and Methods)
	Chapter 1. Introducing Routines
	Routines (Stored Procedures, UDFs, Methods)
	Benefits of Routines
	Types of Routines
	Routines: Stored Procedures
	Routines: Scalar User-Defined Functions
	Routines: Table User-Defined Functions
	Routines: Methods

	Chapter 2. Developing Routines
	Supported Routine Programming Languages
	Best Practices for Developing Routines
	Performance Considerations for Developing Routines
	Security Considerations for Routines
	Library and Class Management Considerations for Developing Routines
	Restrictions for Routines

	Registering Routines
	Writing Routines
	Debugging Routines
	Conflicts When Reading and Writing Tables From Routines
	Stored Procedure Features
	Stored Procedure Parameter Modes
	Stored Procedure Result Sets
	Stored Procedure Result Sets
	Returning Result Sets From SQL and Embedded SQL Stored Procedures
	Returning Result Sets From SQLj Stored Procedures
	Returning Result Sets From JDBC Stored Procedures
	Receiving Stored Procedure Result Sets in SQL-bodied Routines
	Receiving Stored Procedure Result Sets in SQLj Applications and Routines
	Receiving Stored Procedure Result Sets in JDBC Applications and Routines

	Parameter Handling in PROGRAM TYPE MAIN or PROGRAM TYPE SUB Stored Procedures

	UDF and Method Features
	Scratchpads for UDFs and Methods
	Scratchpads on 32-bit and 64-bit Platforms
	Method and Scalar Function Processing Model

	User-Defined Table Functions
	User-Defined Table Functions
	Table Function Processing Model
	Table Function Execution Model for Java

	Chapter 3. SQL-Bodied Routines
	CREATE Statements for SQL-Bodied Routines
	Dynamic SQL in SQL-Bodied Routines
	Displaying Error Messages for SQL Procedures
	Condition Handlers in SQL Procedures
	Condition Handlers in SQL Procedures
	Condition Handler Declarations
	SIGNAL and RESIGNAL Statements in Condition Handlers
	SQLCODE and SQLSTATE Variables in SQL Procedures

	Chapter 4. External Routines
	Parameter Styles for External Routines
	Syntax for Passing Arguments to Routines Written in C/C++, OLE, or COBOL
	SQL in External Routines
	Authorizations and Binding for External Routines that Contain SQL
	Effects of DYNAMICRULES on Dynamic SQL
	C/C++ Routines
	C/C++ Routines
	Include File for C/C++ Routines (sqludf.h)
	Supported SQL Data Types in C/C++
	SQL Data Type Handling in C/C++ Routines
	Graphic Host Variables in C/C++ Routines
	C++ Type Decoration

	Java Routines
	Java Routines
	JAR File Administration on the Database Server
	Supported SQL Data Types in Java
	Debugging Stored Procedures in Java
	Debugging Stored Procedures in Java
	Preparing to Debug Java Stored Procedures
	Populating the Debug Table
	Invoking the Debug Program
	Java Debug Table DB2DBG.ROUTINE_DEBUG

	OLE Automation Routines
	OLE Automation Routine Design
	Creating and Registering OLE Automation Routines
	Object Instance and Scratchpad Considerations and OLE Routines
	Supported SQL Data Types in OLE Automation
	OLE Automation Routines in BASIC and C++

	OLE DB User-Defined Table Functions
	OLE DB User-Defined Table Functions
	Creating an OLE DB Table UDF
	Fully Qualified Rowset Names
	Supported SQL Data Types in OLE DB

	Chapter 5. Invoking/Calling Routines
	Invoking Routines
	Invoking Stored Procedures
	Invoking UDFs
	Invoking User-Defined Table Functions
	Routine Nesting
	Invoking 32-bit Routines on a 64-bit Database Server
	Code Pages and Routines
	Referencing Routines
	Routine Names and Paths
	References to Functions
	Function Selection
	Distinct Types as Routine Parameters
	LOB Values as UDF Parameters
	References to Stored Procedures
	Stored Procedure Selection

	Part 2. Large Objects, User-Defined Distinct Types, and Triggers
	Chapter 6. Large Objects
	Large Object Usage
	Large Object Locators
	Retrieving a LOB Value with a LOB Locator
	Deferring the Evaluation of LOB Expressions
	Large Object File Reference Variables
	Writing Data from a CLOB Column to a Text File
	Inserting Data from a Text File into a CLOB Column

	Chapter 7. User-Defined Distinct Types
	User-Defined Types
	User-Defined Distinct Types
	Strong Typing in User-Defined Distinct Types
	Defining Distinct Types
	Creating Tables with Columns Based on Distinct Types
	Dropping User-Defined Types
	Defining Currency-Based Distinct Types
	Defining a Distinct Type for Completed Job Application Forms
	Creating Tables to Track International Sales
	Creating a Table to Store Completed Job Application Forms
	Manipulating Distinct Types
	Manipulating Distinct Types
	Casting between Distinct Types
	Performing Comparisons Involving Distinct Types
	Performing Comparisons between Distinct Types and Constants
	Performing Assignments Involving Distinct Types in Embedded SQL
	Performing Assignments Involving Distinct Types in Dynamic SQL
	Performing Assignments Involving Different Distinct Types
	Performing UNION Operations on Distinctly Typed Columns
	Defining Sourced UDFs for Distinct Types

	Chapter 8. User-Defined Structured Types
	User-Defined Structured Types
	Defining Structured Types
	Storing Instances of Structured Types
	Instantiability in Structured Types
	Structured Type Hierarchies
	Creating a Structured Type Hierarchy
	Defining Behavior for Structured Types
	Dynamic Dispatch of Methods
	System-Generated Routines for Structured Types
	Comparison and Casting Functions for Structured Types
	Constructor Functions for Structured Types
	Mutator Methods for Structured Types
	Observer Methods for Structured Types

	Typed Tables
	Typed Tables
	Creating Typed Tables
	Dropping Typed Tables
	Substitutability in Typed Tables
	Storing Objects in Typed Table Rows
	Defining System-Generated Object Identifiers
	Defining Constraints on Object Identifier Columns
	Reference Types
	Reference Types
	Relationships between Objects in Typed Tables
	Defining Semantic Relationships with References
	Referential Integrity versus Scoped References

	Typed Views
	Typed Views
	Creating Typed Views
	Altering Typed Views
	Dropping Typed Views

	Querying Typed Tables and Typed Views
	Issuing Queries to Dereference References
	Returning Objects of a Particular Type Using ONLY
	Restricting Returned Types Using a TYPE Predicate
	Returning All Possible Types Using OUTER

	Structured Types as Column Types
	Storing Structured Type Objects in Table Columns
	Inserting Structured Type Attributes Into Columns
	Defining and Altering Tables with Structured Type Columns
	Defining Types with Structured Type Attributes
	Inserting Rows That Contain Structured Type Values
	Modifying Structured Type Values in Columns
	Retrieving and Modifying Structured Type Values in Columns
	Retrieving Structured Type Attributes
	Accessing the Attributes of Subtypes
	Modifying Structured Type Attributes
	Returning Information About a Structured Type

	Transform Functions and Transform Groups
	Transform Functions and Transform Groups
	Recommendations for Naming Transform Groups
	Specification of Transform Groups
	Specification of Transform Groups
	Specifying Transform Groups for External Routines
	Specifying Transform Groups for Dynamic SQL
	Specifying Transform Groups for Static SQL

	Creating the Mapping to the Host Language Program
	Host Language Program Mappings with Transform Functions
	Function Transforms
	Implementing Function Transforms Using SQL-bodied Routines
	Passing Structured Type Parameters to External Routines
	Client Transforms
	Implementing Client Transforms Using External UDFs
	Implementing Client Transforms for Binding in from a Client Using External UDFs
	Data Conversion Considerations
	Transform Function Requirements
	Retrieving Subtype Data from DB2
	Returning Subtype Data to DB2

	Structured Type Host Variables
	Declaring Structured Type Host Variables
	Describing a Structured Type

	Chapter 9. Triggers
	Triggers in Application Development
	INSERT, UPDATE, and DELETE Triggers
	Trigger Interactions with Referential Constraints
	INSTEAD OF Triggers
	Trigger Creation Guidelines
	Creating Triggers
	Trigger Granularity
	Trigger Activation Time
	Transition Variables
	Transition Tables
	Triggered Action
	Triggered Action
	Triggered Action: Conditions
	Triggered Action: SQL Statements
	Triggered Action: Functions

	Multiple Triggers
	Synergy Between Triggers, Constraints, and Routines
	Extracting Information from UDTs, UDFs, and LOBs with Triggers
	Preventing Operations on Tables Using Triggers
	Defining Business Rules Using Triggers
	Defining Actions Using Triggers

	Part 3. Appendixes
	Appendix A. DB2GENERAL Routines
	DB2GENERAL Routines
	DB2GENERAL UDFs
	Supported SQL Data Types in DB2GENERAL Routines
	Java Classes for DB2GENERAL Routines
	Java Classes for DB2GENERAL Routines
	DB2GENERAL Java Class: COM.IBM.db2.app.StoredProc
	DB2GENERAL Java Class: COM.IBM.db2.app.UDF
	DB2GENERAL Java Class: COM.IBM.db2.app.Lob
	DB2GENERAL Java Class: COM.IBM.db2.app.Blob
	DB2GENERAL Java Class: COM.IBM.db2.app.Clob

	Appendix B. DB2 Universal Database technical information
	Overview of DB2 Universal Database technical information
	Categories of DB2 technical information
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Accessing online help
	Finding topics by accessing the DB2 Information Center from a browser
	Finding product information by accessing the DB2 Information Center from the administration tools
	Viewing technical documentation online directly from the DB2 HTML Documentation CD
	Updating the HTML documentation installed on your machine
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Troubleshooting DB2 documentation search with Netscape 4.x
	Searching the DB2 documentation
	Online DB2 troubleshooting information
	Accessibility
	Keyboard Input and Navigation
	Keyboard Input
	Keyboard Focus

	Accessible Display
	Font Settings
	Non-dependence on Color

	Alternative Alert Cues
	Compatibility with Assistive Technologies
	Accessible Documentation

	DB2 tutorials
	DB2 Information Center for topics

	Appendix C. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

